Skip to main content

Subspace Clustering Multi-module Self-organizing Maps with Two-Stage Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Clustering complexity increases with the number of categories and sub-categories and with data dimensionality. In this case, the distance metrics lose discrimination power with the growth of such dimensionality. Thus, we propose a multiple-module soft subspace clustering algorithm called Subspace Clustering Multi-Module Self-Organizing Maps (SC-MuSOM) that produces a map for each category. Moreover, SC-MuSOM learns a relevance coefficient for each dimension of each cluster handling the dimensionality curse. This fast-training model has a second learning stage in which the cluster prototypes are finely tuned considering the spatial resemblance between cluster centers. We validated the model with data mining sets from UCI Repository and computer vision data. Our experiments suggest that SC-MuSOM is competitive with other state-of-the-art models for the tested problems.

We thank FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco) for financial support project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assent, I.: Clustering high dimensional data. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 2, 340–350 (2012)

    Article  Google Scholar 

  2. Liu, C., Xie, J., Zhao, Q., Xie, Q., Liu, C.: Novel evolutionary multi-objective soft subspace clustering algorithm for credit risk assessment. Expert Syst. Appl. 138, 112827 (2019)

    Article  Google Scholar 

  3. Pereira, R.B., Plastino, A., Zadrozny, B., Merschmann, L.H.: Categorizing feature selection methods for multi-label classification. Artif. Intell. Rev. 49, 57–78 (2018). https://doi.org/10.1007/s10462-016-9516-4

    Article  Google Scholar 

  4. Araújo, A.F.R., Antonino, V.O., Ponce-Guevara, K.L.: Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw. 130, 253–268 (2020)

    Article  Google Scholar 

  5. Deng, Z., Choi, K.S., Jiang, Y., Wang, J., Wang, S.: A survey on soft subspace clustering. Inf. Sci. 348, 84–106 (2016)

    Article  MathSciNet  Google Scholar 

  6. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. J. Int. Neural Netw. Soc. 15, 1059–68 (2002)

    Article  Google Scholar 

  7. Melchert, F., Bani, G., Seiffert, U., Biehl, M.: Adaptive basis functions for prototype-based classification of functional data. Neural Comput. Appl. 32, 18213–18223 (2020). https://doi.org/10.1007/s00521-019-04299-2

    Article  Google Scholar 

  8. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21, 3532–3561 (2009)

    Article  MathSciNet  Google Scholar 

  9. Hammer, B., Schleif, F.M., Villmann, T.: On the generalization ability of prototype-based classifiers with local relevance determination. Citeseer (2005)

    Google Scholar 

  10. Bassani, H.F., Araújo, A.F.R.: Dimension selective self-organizing maps for clustering high dimensional data. In: The International Joint Conference on Neural Networks, pp. 1–8. IEEE (2012)

    Google Scholar 

  11. Bassani, H.F., Araújo, A.F.R.: Dimension selective self-organizing maps with time-varying structure for subspace and projected clustering. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 458–471 (2015)

    Article  MathSciNet  Google Scholar 

  12. Attaoui, M.O., Attaoui, M.O., Azzag, H., Lebbah, M., Keskes, N.: Subspace data stream clustering with global and local weighting models. Neural Comput. Appl. 33(8), 3691–3712 (2021). https://doi.org/10.1007/s00521-020-05184-z

    Article  Google Scholar 

  13. Araújo, A.F.R., Rego, R.L.: Self-organizing maps with a time-varying structure. ACM Comput. Surv. 46(1), 7:1–7:38 (2013)

    Google Scholar 

  14. Hua, W., Lingfei, M.: Clustering ensemble model based on self-organizing map network. Comput. Intell. Neurosci. 2020 (2020)

    Google Scholar 

  15. Shahi, K.R., et al.: Hierarchical sparse subspace clustering (HESSC): an automatic approach for hyperspectral image analysis. Remote Sens. 12(15), 2421 (2020)

    Article  Google Scholar 

  16. Mishne, G., Talmon, R., Cohen, I., Coifman, R.R., Kluger, Y.: Data-driven tree transforms and metrics. IEEE Trans. Sig. Inf. Process. Netw. 4(3), 451–466 (2017)

    MathSciNet  Google Scholar 

  17. Goren-Bar, D., Kuflik, T.: Supporting user-subjective categorization with self-organizing maps and learning vector quantization. J. Am. Soc. Inf. Sci. Technol. 56(4), 345–355 (2005)

    Article  Google Scholar 

  18. Rahutomo, F., Kitasuka, T., Aritsugi, M.: Semantic cosine similarity. In: International Student Conference on Advanced Science and Technology, ICAST, vol. 4, no. 1 (2012)

    Google Scholar 

  19. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.uci.edu/ml/index.php

  20. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  21. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 524–531 (2005)

    Google Scholar 

  22. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Conference on Computer Vision and Pattern Recognition Workshop, p. 178 (2004)

    Google Scholar 

  23. Wu, J., Lin, Z., Zha, H.: Essential tensor learning for multi-view spectral clustering. IEEE Trans. Image Process. 28(12), 5910–5922 (2019)

    Article  MathSciNet  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcondes R. da Silva Júnior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva Júnior, M.R., Araújo, A.F.R. (2022). Subspace Clustering Multi-module Self-organizing Maps with Two-Stage Learning. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics