Skip to main content

Self-supervised Detransformation Autoencoder for Representation Learning in Open Set Recognition

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

The objective of Open set recognition (OSR) is to learn a classifier that can reject the unknown samples while classifying the known classes accurately. In this paper, we propose a self-supervision method, Detransformation Autoencoder (DTAE), for the OSR problem. This proposed method engages in learning representations that are invariant to the transformations of the input data. Experiments on several standard image datasets indicate that the pre-training process significantly improves the model performance in the OSR tasks. Moreover, our analysis indicates that DTAE can yield representations that contain some class information even without class labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, pp. 1597–1607 (2020)

    Google Scholar 

  3. Dietterich, T.G.: Steps toward robust artificial intelligence. AI Mag. 38(3), 3–24 (2017)

    Google Scholar 

  4. Ge, Z., Demyanov, S., Garnavi, R.: Generative openmax for multi-class open set classification. In: British Machine Vision Conference (2017)

    Google Scholar 

  5. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: 6th International Conference on Learning Representations, ICLR 2018 (2018)

    Google Scholar 

  6. Hassen, M., Chan, P.K.: Learning a neural-network-based representation for open set recognition. In: Proceedings of SIAM International Conference on Data Mining, pp. 154–162 (2020)

    Google Scholar 

  7. Jia, J., Chan, P.K.: MMF: a loss extension for feature learning in open set recognition. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021, Part II. LNCS, vol. 12892, pp. 319–331. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1_26

    Chapter  Google Scholar 

  8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  9. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database (1999). http://yann.lecun.com/exdb/mnist/

  10. Ortiz, E.G., Becker, B.C.: Face recognition for web-scale datasets. Comput. Vis. Image Underst. 118, 153–170 (2014)

    Article  Google Scholar 

  11. Perera, P., et al.: Generative-discriminative feature representations for open-set recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11811–11820 (2020)

    Google Scholar 

  12. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 153–168 (2018)

    Google Scholar 

  13. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013)

    Article  Google Scholar 

  14. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Information Processing in Medical Imaging - 25th International Conference, pp. 146–157 (2017)

    Google Scholar 

  15. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Conference on Computer Vision and Pattern Recognition, pp. 815–823. IEEE (2015)

    Google Scholar 

  16. Shu, L., Xu, H., Liu, B.: Unseen class discovery in open-world classification. arXiv preprint arXiv:1801.05609 (2018)

  17. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  18. Yoshihashi, R., Shao, W., Kawakami, R., You, S., Iida, M., Naemura, T.: Classification-reconstruction learning for open-set recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 4016–4025 (2019)

    Google Scholar 

  19. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: Proceedings of the 38th International Conference on Machine Learning, ICML 2021, Virtual Event, vol. 139, pp. 12310–12320. PMLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyun Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, J., Chan, P.K. (2022). Self-supervised Detransformation Autoencoder for Representation Learning in Open Set Recognition. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics