Skip to main content

Hyperspectral Endoscopy Using Deep Learning for Laryngeal Cancer Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13532))

Included in the following conference series:

Abstract

We propose an efficient hyperspectral imaging (HSI) Deep Learning system for laryngeal cancer prediction. An in-vivo data set with 13 hyperspectral (HS) cubes of malignant laryngeal tumors has been collected directly from 13 different patients at Klinikum Braunschweig using a HS camera. In such medical applications, the data set is usually very sparse, limited, complex and noisy. Therefore, an efficient HSI Deep Learning system is highly needed. First, a relevant wavelength analysis has been done in order to detect the most informative channels in the HS cubes to speed up the prediction and reduce the noise. Based on the results, a new UNet, called Efficient Exception UNet (EFX-UNet), is devised and the two channels No. 13 and No. 14 from each cube are used for training and prediction. The EFX-UNet predicts the probability of the patient having a malignant tumor and yields an initial segmentation. After that a deeper analysis is carried on for the detected patients using the 8 channels No. 9 to No. 16 with our modified Deep UNet to precisely segment the tumor. The system is tested on real patient data. With EFX-UNet we could reduce the prediction time from 60 s with Deep UNet to only 5 s. Although the data set is very limited and very complex, we could achieve a dice score test of \(68.6 \%\) with EFX-UNet for initial segmentation and \(88 \%\) with the Deep UNet in our system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MV0-D2048x1088-C01-HS02-160-G2 (Photonfocus AG, Switzerland).

References

  1. Arens, C., et al.: Fortschritte der endoskopischen diagnostik von dysplasien und karzinomen des larynx. HNO 60(1), 44–52 (2012)

    Article  Google Scholar 

  2. Aupérin, A.: Epidemiology of head and neck cancers: an update. Curr. Opin. Oncol. 32(3), 178–186 (2020)

    Article  Google Scholar 

  3. Azam, M., et al.: Deep learning applied to white light and narrow band imaging videolaryngoscopy: toward real-time laryngeal cancer detection. Laryngoscope (2021). https://doi.org/10.1002/lary.29960

    Article  Google Scholar 

  4. Bengs, M., et al.: Spatio-spectral deep learning methods for in-vivo hyperspectral laryngeal cancer detection. In: Medical Imaging 2020: Computer-Aided Diagnosis (2020). https://doi.org/10.1117/12.2549251

  5. Chollet, F.: Xception: Deep learning with depthwise separable convolutions (2016). https://doi.org/10.48550/ARXIV.1610.02357

  6. Date, K., et al.: Inhibition of tumor growth and invasion by a four-kringle antagonist (hgf/nk4) for hepatocyte growth factor. Oncogene 17(23), 3045–3054 (1998)

    Article  Google Scholar 

  7. Gerstner, A.O.H.: Früherkennung von kopf-hals-tumoren. entwicklung, aktueller stand und perspektiven. Laryngo-Rhino-Otologie 87 Suppl 1(S 1), S1–S20 (2008)

    Google Scholar 

  8. Halicek, M., et al.: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. Biomed. Opt. 22(6), 1–4 (2017)

    Article  Google Scholar 

  9. Huang, B., et al.: Tiling and stitching segmentation output for remote sensing: basic challenges and recommendations (2018). https://doi.org/10.48550/ARXIV.1805.12219

  10. HyperSpectral Imaging: Photonfocus (2021)

    Google Scholar 

  11. Iqbal, H.: Harisiqbal88/plotneuralnet (2018). https://doi.org/10.5281/zenodo.2526396

  12. Jadon, S.: A survey of loss functions for semantic segmentation. In: CIBCB, pp. 1–7. IEEE (2020)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR (2015)

    Google Scholar 

  14. Meyer-Veit, F., et al.: Hyperspectral Wavelength Analysis with U-Net for Larynx Cancer Detection. In: ESANN (2022)

    Google Scholar 

  15. Munir, K., et al.: Cancer diagnosis using deep learning: a bibliographic review. Cancers 11(9), 1235 (2019)

    Article  Google Scholar 

  16. Ortiz, F., et al.: Automatic detection and elimination of specular reflectance in color images by means of ms diagram and vector connected filters. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 36(5), 681–687 (2006)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Siddique, N., et al.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021)

    Article  Google Scholar 

  19. Tchoulack, S., et al.: A video stream processor for real-time detection and correction of specular reflections in endoscopic images. In: IEEE NEWCAS-TAISA, pp. 49–52 (2008)

    Google Scholar 

  20. Telea, A.: An image inpainting technique based on the fast marching method. J. Graphics Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  21. Trajanovski, S., et al.: Tongue Tumor Detection in Hyperspectral Images Using Deep Learning Semantic Segmentation. IEEE Trans. Biomed. Eng. 68(4), 1330–1340 (2021). https://doi.org/10.1109/TBME.2020.3026683

    Article  Google Scholar 

  22. User Manual MV0/OEM0 CMOSIS Camera Series: Photonfocus (2020)

    Google Scholar 

  23. Wang, T.D., et al.: Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin. Gastroenterol. Hepatol. Official Clin. Ppract. J. Am. Gastroenterol. Assoc. 2(9), 744–753 (2004)

    Google Scholar 

  24. Yamada, T., et al.: Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in egfr-t790m mutant lung cancer. Clin. Cancer Res. 16(1), 174–183 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Meyer-Veit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer-Veit, F., Rayyes, R., Gerstner, A.O.H., Steil, J. (2022). Hyperspectral Endoscopy Using Deep Learning for Laryngeal Cancer Segmentation. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics