Skip to main content

Universally Composable End-to-End Secure Messaging

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13508))

Included in the following conference series:

Abstract

We model and analyze the Signal end-to-end messaging protocol within the UC framework. In particular:

  • We formulate an ideal functionality that captures end-to-end secure messaging, in a setting with PKI and an untrusted server, against an adversary that has full control over the network and can adaptively and momentarily compromise parties at any time and obtain their entire internal states. In particular our analysis captures the forward secrecy and recovery-of-security properties of Signal and the conditions under which they break.

  • We model the main components of the Signal architecture (PKI and long-term keys, the backbone continuous-key-exchange or “asymmetric ratchet,” epoch-level symmetric ratchets, authenticated encryption) as individual ideal functionalities that are realized and analyzed separately and then composed using the UC and Global-State UC theorems.

  • We show how the ideal functionalities representing these components can be realized using standard cryptographic primitives under minimal hardness assumptions.

Our modeling introduces additional innovations that enable arguing about the security of Signal irrespective of the underlying communication medium, as well as secure composition of dynamically generated modules that share state. These features, together with the basic modularity of the UC framework, will hopefully facilitate the use of both Signal-as-a-whole and its individual components within cryptographic applications.

Two other features of our modeling are the treatment of fully adaptive corruptions, and making minimal use of random oracle abstractions. In particular, we show how to realize continuous key exchange in the plain model, while preserving security against adaptive corruptions.

This material is based upon work supported by the National Science Foundation under Grants No. 1718135, 1763786, 1801564, 1915763, and 1931714, by the DARPA SIEVE program under Agreement No. HR00112020021, by DARPA and the Naval Information Warfare Center (NIWC) under Contract No. N66001-15-C-4071, and by a Sloan Foundation Research Award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_5

    Chapter  Google Scholar 

  2. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements for the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_9

    Chapter  Google Scholar 

  3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure group messaging protocols and the security of MLS. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 1463–1483. ACM Press, November 2021

    Google Scholar 

  4. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 261–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_10

    Chapter  Google Scholar 

  5. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal composition with global subroutines: capturing global setup within plain UC. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp. 1–30. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_1

    Chapter  Google Scholar 

  6. Badertscher, C., Hesse, J., Zikas, V.: On the (ir)replaceability of global setups, or how (not) to use a global ledger. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 626–657. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_22

    Chapter  Google Scholar 

  7. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 621–650. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_21

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  9. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party case. In: 27th ACM STOC, pp. 57–66. ACM Press, May/June 1995

    Google Scholar 

  10. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted encryption and key exchange: the security of messaging. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_21

    Chapter  Google Scholar 

  11. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 198–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_8

    Chapter  MATH  Google Scholar 

  12. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more complete analysis of the signal double ratchet algorithm. Cryptology ePrint Archive, Report 2022/355 (2022). https://eprint.iacr.org/2022/355

  13. Blazy, O., Bossuat, A., Bultel, X., Fouque, P., Onete, C., Pagnin, E.: SAID: reshaping signal into an identity-based asynchronous messaging protocol with authenticated ratcheting. In: EuroS &P, pp. 294–309. IEEE (2019)

    Google Scholar 

  14. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not to use PGP. In: WPES, pp. 77–84. ACM (2004)

    Google Scholar 

  15. Caforio, A., Durak, F.B., Vaudenay, S.: Beyond security and efficiency: on-demand ratcheting with security awareness. In: Garay, J.A. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 649–677. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_23

    Chapter  Google Scholar 

  16. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_10

    Chapter  Google Scholar 

  17. Campion, S., Devigne, J., Duguey, C., Fouque, P.-A.: Multi-device for signal. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020, Part II. LNCS, vol. 12147, pp. 167–187. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57878-7_9

    Chapter  Google Scholar 

  18. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001

    Google Scholar 

  19. Canetti, R.: Universally composable security. J. ACM 67(5), 28:1–28:94 (2020)

    Google Scholar 

  20. Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication in the presence of break-ins. J. Cryptol. 13(1), 61–105 (2000)

    Article  MathSciNet  Google Scholar 

  21. Canetti, R., Jain, P., Swanberg, M., Varia, M.: Universally composable end-to-end secure messaging. Cryptology ePrint Archive, Report 2022/376 (2022). https://eprint.iacr.org/2022/376

  22. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  23. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_22

    Chapter  Google Scholar 

  24. Canetti, R., Shahaf, D., Vald, M.: Universally composable authentication and key-exchange with global PKI. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 265–296. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_11

    Chapter  MATH  Google Scholar 

  25. Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and anonymous credentials supporting efficient verifiable encryption. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1445–1459. ACM Press, November 2020

    Google Scholar 

  26. Chen, K., Chen, J.: Anonymous end to end encryption group messaging protocol based on asynchronous ratchet tree. In: Meng, W., Gollmann, D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 588–605. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61078-4_33

    Chapter  Google Scholar 

  27. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. In: EuroS &P, pp. 451–466. IEEE (2017)

    Google Scholar 

  28. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. J. Cryptol. 33(4), 1914–1983 (2020)

    Article  MathSciNet  Google Scholar 

  29. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-ends encryption: asynchronous group messaging with strong security guarantees. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1802–1819. ACM Press, October 2018

    Google Scholar 

  30. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In: Hicks, M., Köpf, B. (eds.) CSF 2016 Computer Security Foundations Symposium, pp. 164–178. IEEE Computer Society Press (2016)

    Google Scholar 

  31. Cremers, C., Fairoze, J., Kiesl, B., Naska, A.: Clone detection in secure messaging: improving post-compromise security in practice. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1481–1495. ACM Press, November 2020

    Google Scholar 

  32. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3_20

    Chapter  Google Scholar 

  33. Hashimoto, K., Katsumata, S., Kwiatkowski, K., Prest, T.: An efficient and generic construction for signal’s handshake (X3DH): post-quantum, state leakage secure, and deniable. In: Garay, J.A. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 410–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_15

    Chapter  Google Scholar 

  34. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguishability under selective opening. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 121–145. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_5

    Chapter  Google Scholar 

  35. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state compromise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_2

    Chapter  Google Scholar 

  36. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_6

    Chapter  Google Scholar 

  37. Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 180–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_7

    Chapter  Google Scholar 

  38. Keybase blog: New cryptographic tools on keybase (2020). https://keybase.io/blog/crypto

  39. Krohn, M.: Zoom rolling out end-to-end encryption offering (2020). https://blog.zoom.us/zoom-rolling-out-end-to-end-encryption-offering/

  40. Martiny, I., Kaptchuk, G., Aviv, A.J., Roche, D.S., Wustrow, E.: Improving signal’s sealed sender. In: NDSS. The Internet Society (2021)

    Google Scholar 

  41. Maurer, U.: Constructive cryptography – a primer. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, p. 1. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_1

    Chapter  Google Scholar 

  42. Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_3

    Chapter  MATH  Google Scholar 

  43. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8

    Chapter  Google Scholar 

  44. Open Whisper Systems: Technical information: Specifications and software libraries for developers (2016). https://signal.org/docs/

  45. Perrin, T.: The noise protocol framework (2018). https://noiseprotocol.org/noise.html

  46. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 3–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

    Chapter  Google Scholar 

  47. Rösler, P., Mainka, C., Schwenk, J.: More is less: on the end-to-end security of group chats in signal, whatsapp, and threema. In: EuroS &P, pp. 415–429. IEEE (2018)

    Google Scholar 

  48. Rotem, L., Segev, G.: Out-of-band authentication in group messaging: computational, statistical, optimal. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 63–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_3

    Chapter  MATH  Google Scholar 

  49. Singh, M.: Whatsapp is now delivering roughly 100 billion messages a day (2020). https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/

  50. Status: Private, secure communication (2022). https://status.im

  51. Sylo: Comms for the metaverse (2022). https://sylo.io

  52. Unger, N., et al.: SoK: secure messaging. In: 2015 IEEE Symposium on Security and Privacy, pp. 232–249. IEEE Computer Society Press, May 2015

    Google Scholar 

  53. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1211–1223. ACM Press, October 2015

    Google Scholar 

  54. Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges for secure messaging. PoPETs 2018(1), 21–66 (2018)

    Article  Google Scholar 

  55. Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic deniability of the signal protocol. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020, Part II. LNCS, vol. 12147, pp. 188–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57878-7_10

    Chapter  Google Scholar 

  56. WhatsApp LLC: About end-to-end encryption (2021). https://faq.whatsapp.com/general/security-and-privacy/end-to-end-encryption/

  57. Yan, H., Vaudenay, S.: Symmetric asynchronous ratcheted communication with associated data. In: Aoki, K., Kanaoka, A. (eds.) IWSEC 2020. LNCS, vol. 12231, pp. 184–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58208-1_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palak Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canetti, R., Jain, P., Swanberg, M., Varia, M. (2022). Universally Composable End-to-End Secure Messaging. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13508. Springer, Cham. https://doi.org/10.1007/978-3-031-15979-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15979-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15978-7

  • Online ISBN: 978-3-031-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics