Abstract
In this article, we generalize the works of Pan et al. (Eurocrypt’21) and Porter et al. (ArXiv’21) and provide a simple condition under which an ideal lattice defines an easy instance of the shortest vector problem. Namely, we show that the more automorphisms stabilize the ideal, the easier it is to find a short vector in it. This observation was already made for prime ideals in Galois fields, and we generalize it to any ideal (whose prime factors are not ramified) of any number field.
We then provide a cryptographic application of this result by showing that particular instances of the partial Vandermonde knapsack problem, also known as partial Fourier recovery problem, can be solved classically in polynomial time. As a proof of concept, we implemented our attack and managed to solve those particular instances for concrete parameter settings proposed in the literature. For random instances, we can halve the lattice dimension with non-negligible probability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper, we only consider regimes where the solution to this problem is unique.
- 2.
For the sake of simplicity, we focus on cyclotomic fields in the introduction but stress that
can be defined over any number field.
- 3.
This is not the standard definition, see for instance [Mar77, Theorem 52] for a proof that this is an equivalent definition.
- 4.
Note that the equality \(\tau (I) = I\) means that the two sets are equal, but it does not mean that all the elements of I are fixed by \(\tau \).
- 5.
For arbitrary Euclidean lattices, it is much harder to give concrete conditions which ensure a unique solution for \(\textrm{HBDD}\). This is why we think the definition of this problem only makes sense in the ideal setting.
- 6.
Even though they originally called it the partial Fourier recovery problem.
- 7.
For the case of HPSSW parameters, the generation of a is slightly different, in order to be consistent with the specifications of [HPS+14]. They consider
instances over the cyclic ring \(\mathbb {Z}[X]/(X^m-1)\) instead of \(O_K\). For this specific case, we generate a with ternary coefficients in the ring \(\mathbb {Z}[X]/(X^m-1)\), and then reduce it modulo \(\varPhi _m(X)\) in order to map it to \(O_K\) and continue the attack in \(O_K\), cf. Sect. 2.4.
- 8.
Note that here, we do not reduce the size of \(\varOmega \) below \(t_0\): we take \(\varOmega \) as the union of multiple sets \(\varOmega '\), each one of size 16 such that \(I_{\varOmega '}\) is fixed by a subgroup H of \(\textrm{Aut}_\mathbb {Q}(K)\) of size 16 (the same H for all the \(\varOmega '\)).
References
Albrecht, M.R., Deo, A.: Large modulus ring-LWE \(\ge \) module-LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_10
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108. ACM (1996)
Babai, L.: On lovász’lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Boudgoust, K., Gachon, E., Pellet-Mary, A.: Some easy instances of ideal-SVP and implications on the partial Vandermonde Knapsack problem. Cryptology ePrint Archive, Paper 2022/709 (2022)
Bernard, O., Lesavourey, A., Nguyen, T.-H., Roux-Langlois, A.: Log-S-unit lattices using explicit stickelberger generators to solve approx ideal-SVP. Cryptology ePrint Archive (2021)
Boudgoust, K.: Theoretical hardness of algebraically structured learning with errors. Ph.D. thesis, Universite Rennes 1 (2021). https://tel.archives-ouvertes.fr/tel-03534254/document
Bernard, O., Roux-Langlois, A.: Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 349–380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_12
Boudgoust, K., Sakzad, A., Steinfeld, R.: Vandermonde meets Regev: public key encryption schemes based on partial Vandermonde problems. Cryptology ePrint Archive, Report 2022/679 (2022)
Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_20
Cramer, R., Ducas, L., Wesolowski, B.: Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time. J. ACM (JACM) 68(2), 1–26 (2021)
Conrad, K.: The different ideal. https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf. Accessed 16 Feb 2022
de Boer, K., Ducas, L., Pellet-Mary, A., Wesolowski, B.: Random self-reducibility of ideal-SVP via Arakelov random walks. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 243–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_9
Doröz, Y., Hoffstein, J., Silverman, J.H., Sunar, B.: MMSAT: a scheme for multimessage multiuser signature aggregation. Cryptology ePrint Archive, Report 2020/520 (2020)
Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009). http://crypto.stanford.edu/craig
Hoffstein, J., Kaliski, B.S., Jr., Lieman, D.B., Robshaw, M.J.B., Yin, Y.L.: Secure user identification based on constrained polynomials, 13 June 2000. US Patent 6,076,163. Filed 20 October 1997
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_25
Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical signatures from the partial Fourier recovery problem. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 476–493. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_28
Hoffstein, J., Silverman, J.H.: Pass-encrypt: a public key cryptosystem based on partial evaluation of polynomials. Des. Codes Crypt. 77(2), 541–552 (2015)
Lang, S.: Algebra. Springer, Heidelberg (2002). https://doi.org/10.1007/978-1-4613-0041-0
Lyubashevsky, V., Micciancio, D.: Generalized compact Knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4
Lu, X., Zhang, Z., Au, M.H.: Practical signatures from the partial Fourier recovery problem revisited: a provably-secure and Gaussian-distributed construction. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 813–820. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_50
Marcus, D.A.: Number Fields, vol. 2. Springer, Heidelberg (1977). https://doi.org/10.1007/978-1-4684-9356-6
Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: FOCS, pp. 356–365. IEEE Computer Society (2002)
Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_1
Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_24
Porter, C., Mendelsohn, A., Ling, C.: Subfield algorithms for ideal-and module-SVP based on the decomposition group. arXiv preprint arXiv:2105.03219 (2021)
Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8
Pan, Y., Xu, J., Wadleigh, N., Cheng, Q.: On the ideal shortest vector problem over random rational primes. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 559–583. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_20
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0) (2020). https://www.sagemath.org
Washington, L.C.: Introduction to Cyclotomic Fields, vol. 83. Springer, Berlin (1982). https://doi.org/10.1007/978-1-4684-0133-2
Acknowledgments
We are grateful to Amin Sakzad, Damien Stehlé and Ron Steinfeld for helpful discussions. This research was partly funded by the ANR CHARM project (ANR-21-CE94-0003) and further supported by the Danish Independent Research Council under project number 0165-00107B (C3PO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Boudgoust, K., Gachon, E., Pellet-Mary, A. (2022). Some Easy Instances of Ideal-SVP and Implications on the Partial Vandermonde Knapsack Problem. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13508. Springer, Cham. https://doi.org/10.1007/978-3-031-15979-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-15979-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15978-7
Online ISBN: 978-3-031-15979-4
eBook Packages: Computer ScienceComputer Science (R0)