Skip to main content

To Label, or Not To Label (in Generic Groups)

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13509))

Included in the following conference series:

  • 1048 Accesses

Abstract

Generic groups are an important tool for analyzing the feasibility and in-feasibility of group-based cryptosystems. There are two distinct wide-spread versions of generic groups, Shoup’s and Maurer’s, the main difference being whether or not group elements are given explicit labels. The two models are often treated as equivalent. In this work, however, we demonstrate that the models are in fact quite different, and care is needed when stating generic group results:

  • We show that numerous textbook constructions are not captured by Maurer, but are captured by Shoup. In the other direction, any construction captured by Maurer is captured by Shoup.

  • For constructions that exist in both models, we show that security is equivalent for “single stage” games, but Shoup security is strictly stronger than Maurer security for some “multi-stage” games.

  • The existing generic group un-instantiability results do not apply to Maurer. We fill this gap with a new un-instantiability result.

  • We explain how the known black box separations between generic groups and identity-based encryption do not fully apply to Shoup, and resolve this by providing such a separation.

  • We give a new un-instantiability result for the algebraic group model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It appears it was never meant to be: Maurer discusses several classes of problems to consider in his model, capturing discrete log, DDH, and more exotic variants. But general cryptosystems are not covered by the classes of problems.

  2. 2.

    Plain PKE and MAC security are single-stage games.

  3. 3.

    Note that many works in the AGM starting from [FKL18] sometimes additionally add a random oracle, and these techniques can be used on the random oracle.

  4. 4.

    gh could be created by \(\textsf{Gen}\), but we would need to get gh to the adversary before the first query. We could consider a 1-time signature, where gh would be included in the public key. Alternatively, we could consider a 2-time MAC, which includes gh as part of each MAC, giving the adversary gh in time for the second query.

References

  1. Agrawal, S., Yamada, S.: Optimal Broadcast Encryption from Pairings and LWE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 13–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_2

    Chapter  Google Scholar 

  2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

    Chapter  Google Scholar 

  3. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_11

    Chapter  Google Scholar 

  4. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_3

    Chapter  Google Scholar 

  5. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM Press (2014)

    Google Scholar 

  6. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment schemes for multiple points and polynomials. Cryptology ePrint Archive, Report 2020/081 (2020). https://eprint.iacr.org/2020/081

  7. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Automated analysis of cryptographic assumptions in generic group models. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95–112. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_6

    Chapter  MATH  Google Scholar 

  8. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_5

    Chapter  Google Scholar 

  9. Brzuska, C., Farshim, P., Mittelbach, A.: Random-oracle uninstantiability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 428–455. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_17

    Chapter  Google Scholar 

  10. Blocki, J., Lee, S.: On the multi-user security of short Schnorr signatures with preprocessing. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II, volume 13276 of LNCS, pp. 614–643. Springer, Heidelberg (2022)

    Google Scholar 

  11. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: 23rd FOCS, pp. 112–117. IEEE Computer Society Press (1982)

    Google Scholar 

  12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press (1998)

    Google Scholar 

  13. Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 768–798. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_27

    Chapter  Google Scholar 

  14. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocessing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 415–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_14

    Chapter  Google Scholar 

  15. Chiesa, A., Liu, S.: On the impossibility of probabilistic proofs in relativized worlds. In: Vidick, T. (ed.) ITCS 2020, vol. 151, pp. 57:1–57:30; LIPIcs (2020)

    Google Scholar 

  16. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_6

    Chapter  Google Scholar 

  17. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

    Chapter  Google Scholar 

  18. Döttling, N., Hartmann, D., Hofheinz, D., Kiltz, E., Schäge, S., Ursu, B.: On the impossibility of purely algebraic signatures. Cryptology ePrint Archive, Report 2021/738 (2021). https://eprint.iacr.org/2021/738

  19. Fischlin, M.: A note on security proofs in the generic model. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 458–469. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_35

    Chapter  MATH  Google Scholar 

  20. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part II, LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

  21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press (1984)

    Google Scholar 

  22. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press (2003)

    Google Scholar 

  23. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for multiple vector commitments. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 2007–2023. ACM Press (2020)

    Google Scholar 

  24. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_3

    Chapter  MATH  Google Scholar 

  25. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st ACM STOC, pp. 44–61. ACM Press (1989)

    Google Scholar 

  26. Jager, T., Schwenk, J.: On the equivalence of generic group models. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88733-1_14

    Chapter  Google Scholar 

  27. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commitments. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp. 390–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_14

    Chapter  MATH  Google Scholar 

  28. Koblitz, N., Menezes, A.: Another look at generic groups. Cryptology ePrint Archive, Report 2006/230 (2006). https://eprint.iacr.org/2006/230

  29. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1

    Chapter  MATH  Google Scholar 

  30. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer Society Press (1994)

    Google Scholar 

  31. Maurer, U., Portmann, C., Zhu, J.: Unifying generic group models. Cryptology ePrint Archive, Report 2020/996 (2020). https://eprint.iacr.org/2020/996

  32. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Math. Notes 55(2), 165–172 (1994)

    Article  MathSciNet  Google Scholar 

  33. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8

    Chapter  Google Scholar 

  34. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press (1997)

    Google Scholar 

  35. Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH hard groups? Cryptology ePrint Archive, Report 2012/653 (2012). https://eprint.iacr.org/2012/653

  36. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC, pp. 387–394. ACM Press (1990)

    Google Scholar 

  37. Rotem, L., Segev, G., Shahaf, I.: Generic-group delay functions require hidden-order groups. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 155–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_6

  38. Schul-Ganz, G., Segev, G.: Accumulators in (and beyond) generic groups: non-trivial batch verification requires interaction. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 77–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_4

    Chapter  Google Scholar 

  39. Schul-Ganz, G., Segev, G.: Generic-group identity-based encryption: a tight impossibility result. In: Information Theoretic Cryptography (2021)

    Google Scholar 

  40. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  41. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  42. Zhandry, M.: To label, or not to label (in generic groups). Cryptology ePrint Archive, Report 2022/226 (2022). https://eprint.iacr.org/2022/226

  43. Zhandry, M., Zhang, C.: Impossibility of order-revealing encryption in idealized models. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 129–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_5

  44. Zhandry, M., Zhang, C.: The relationship between idealized models under computationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240 (2021). https://ia.cr/2021/240

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Zhandry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhandry, M. (2022). To Label, or Not To Label (in Generic Groups). In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13509. Springer, Cham. https://doi.org/10.1007/978-3-031-15982-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15982-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15981-7

  • Online ISBN: 978-3-031-15982-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics