Skip to main content

An Algebraic Framework for Silent Preprocessing with Trustless Setup and Active Security

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13510))

Included in the following conference series:

Abstract

Recently, number-theoretic assumptions including DDH, DCR and QR have been used to build powerful tools for secure computation, in the form of homomorphic secret-sharing (HSS), which leads to secure two-party computation protocols with succinct communication, and pseudorandom correlation functions (PCFs), which allow non-interactive generation of a large quantity of correlated randomness. In this work, we present a group-theoretic framework for these classes of constructions, which unifies their approach to computing distributed discrete logarithms in various groups. We cast existing constructions in our framework, and also present new constructions, including one based on class groups of imaginary quadratic fields. This leads to the first construction of two-party homomorphic secret sharing for branching programs from class group assumptions.

Using our framework, we also obtain pseudorandom correlation functions for generating oblivious transfer and vector-OLE correlations from number-theoretic assumptions. These have a trustless, public-key setup when instantiating our framework using class groups. Previously, such constructions either needed a trusted setup in the form of an RSA modulus with unknown factorisation, or relied on multi-key fully homomorphic encryption from the learning with errors assumption.

We also show how to upgrade our constructions to achieve active security using appropriate zero-knowledge proofs. In the random oracle model, this leads to a one-round, actively secure protocol for setting up the PCF, as well as a 3-round, actively secure HSS-based protocol for secure two-party computation of branching programs with succinct communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors of [CKLR21] have acknowledged. They claim to have found a solution and are going to update their work.

  2. 2.

    We will always choose \(\ell \) large enough so that \(g^r\) is statistically indistinguishable from uniform in \(\langle g \rangle \). This is possible, even if |H| is sometimes not known by anyone, since an upper bound is always known.

  3. 3.

    For equivalence, it is needed that g and C are random generators of the same subgroup and that \(\mathcal {D}\) is invertible, i.e., that given any group element h in the output domain, one can efficiently compute random coins that would cause \(\mathcal {D}\) to output h.

  4. 4.

    Following the blueprint of [OSY21], it is possible to substitute the setup with a one-round protocol.

References

  1. Abram, D., Damgård, I., Orlandi, C., Scholl, P.: An algebraic framework for silent preprocessing with trustless setup and active security. Cryptology ePrint Archive, Report 2022/363 (2022). https://eprint.iacr.org/2022/363

  2. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret sharing: optimizations and applications. In: ACM CCS 2017. ACM Press, October/November 2017

    Google Scholar 

  3. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  4. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19

    Chapter  Google Scholar 

  5. Benhamouda, F., Herranz, J., Joye, M., Libert, B.: Efficient cryptosystems from \(2^{{{k}}}\)-th power residue symbols. J. Cryptol. 30(2), 519–549 (2016). https://doi.org/10.1007/s00145-016-9229-5

    Article  MATH  Google Scholar 

  6. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1

    Chapter  Google Scholar 

  7. Castagnos, G., Joux, A., Laguillaumie, F., Nguyen, P.Q.: Factoring pq2 with quadratic forms: nice cryptanalyses. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 469–486. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_28

    Chapter  Google Scholar 

  8. Couteau, G., Klooß, M., Lin, H., Reichle, M.: Efficient range proofs with transparent setup from bounded integer commitments. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698, pp. 247–277. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_9

    Chapter  Google Scholar 

  9. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from \(\sf DDH\). In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_26

    Chapter  Google Scholar 

  10. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_8

    Chapter  Google Scholar 

  11. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_9

    Chapter  MATH  Google Scholar 

  12. Damgård, I., Jurik, M.: A length-flexible threshold cryptosystem with applications. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X_30

    Chapter  Google Scholar 

  13. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interaction (extended abstract). In: 33rd FOCS. IEEE Computer Society Press, October 1992

    Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: 27th FOCS. IEEE Computer Society Press, October 1986

    Google Scholar 

  15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: 19th ACM STOC. ACM Press, May 1987

    Google Scholar 

  16. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_32

    Chapter  Google Scholar 

  17. Goldberg, S., Reyzin, L., Sagga, O., Baldimtsi, F.: Efficient noninteractive certification of RSA moduli and beyond. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 700–727. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_24

    Chapter  Google Scholar 

  18. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  19. Joye, M., Libert, B.: Efficient cryptosystems from \(2^k\)-th power residue symbols. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 76–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_5

    Chapter  Google Scholar 

  20. Orlandi, C., Scholl, P., Yakoubov, S.: The Rise of Paillier: homomorphic secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24

    Chapter  Google Scholar 

  21. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  22. Paulus, S., Takagi, T.: A new public-key cryptosystem over a quadratic order with quadratic decryption time. J. Cryptol. 13(2), 263–272 (2000). https://doi.org/10.1007/s001459910010

    Article  MathSciNet  MATH  Google Scholar 

  23. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 687–717. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_23

    Chapter  Google Scholar 

  24. Tucker, I.: Functional encryption and distributed signatures based on projective hash functions, the benefit of class groups. (Chiffrement fonctionnel et signatures distribuées fondés sur des fonctions de hachage à projection, l’apport des groupes de classe). Ph.D thesis, University of Lyon, France (2020)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Guilhem Castagnos and Fabien Laguillaumie for their crucial clarifications about the CL framework and class groups, Lasse Rønne Møller for important observations on the DXDH assumption and the anonymous reviewers for their feedback.

Research supported by: the Concordium Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC); the Independent Research Fund Denmark (DFF) under project number 0165-00107B (C3PO); the Aarhus University Research Foundation; and the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0085. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA). Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Abram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abram, D., Damgård, I., Orlandi, C., Scholl, P. (2022). An Algebraic Framework for Silent Preprocessing with Trustless Setup and Active Security. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13510. Springer, Cham. https://doi.org/10.1007/978-3-031-15985-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15985-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15984-8

  • Online ISBN: 978-3-031-15985-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics