Skip to main content

Analysis and Verification of Robustness Properties in Becker-Döring Model

  • Conference paper
  • First Online:
From Data to Models and Back (DataMod 2021)

Abstract

Many biochemical processes in living cells involve clusters of particles. Such processes include protein aggregation and the development of intracellular concentration gradients. To study these mechanisms, we can apply coagulation-fragmentation models describing populations of interacting components. In this context, the Becker-Döring equations - theorized in 1935 - provide the simplest kinetic model to describe condensations phenomena. Experimental works on this model reveal that it exhibits robustness, defined as the system’s capability to preserve its features despite noise and fluctuations. Here, we verify the robustness of the BD model, applying our notions of initial concentration robustness (\(\alpha \)-robustness and \(\beta \)-robustness), which are related to the influence of the perturbation of the initial concentration of one species (i.e., the input) on the concentration of another species (i.e., the output) at the steady state. Then, we conclude that a new definition of robustness, namely the asymptotic robustness, is necessary to describe more accurately the model’s behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angeli, D., De Leenheer, P., Sontag, E.D.: On the structural monotonicity of chemical reaction networks. In: 2006 45th IEEE Conference on Decision and Control, pp. 7–12. IEEE (2006)

    Google Scholar 

  2. Ball, J.M., Carr, J.: Asymptotic behaviour of solutions to the Becker-döring equations for arbitrary initial data. Proc. R. Soc. Edinb. Sect. A Math. 108(1–2), 109–116 (1988)

    Article  Google Scholar 

  3. Ball, J.M., Carr, J., Penrose, O.: The Becker-döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104(4), 657–692 (1986)

    Article  Google Scholar 

  4. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction systems with context properties. In: Suraj, Z., Czaja, L. (eds.) Proceedings of the 24th International Workshop on Concurrency, Specification and Programming, Rzeszow, Poland, September 28–30, 2015. CEUR Workshop Proceedings, vol. 1492, pp. 31–43. CEUR-WS.org (2015)

    Google Scholar 

  5. Barbuti, R., Gori, R., Milazzo, P., Nasti, L.: A survey of gene regulatory networks modelling methods: from differential equations, to Boolean and qualitative bioinspired models. J. Membr. Comput. 2(3), 207–226 (2020)

    Article  MathSciNet  Google Scholar 

  6. Becker, R., Döring, W.: Kinetische behandlung der keimbildung in übersättigten dämpfen. Ann. Phys. 416(8), 719–752 (1935)

    Article  Google Scholar 

  7. Blanchini, F., Franco, E.: Structurally robust biological networks. BMC Syst. Biol. 5(1), 74 (2011)

    Article  Google Scholar 

  8. Burton, J.: Nucleation theory. In: Berne, B.J. (eds.) Statistical Mechanics. Modern Theoretical Chemistry, vol. 5, pp. 195–234. Springer, Boston, MA (1977). https://doi.org/10.1007/978-1-4684-2553-6_6

  9. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors-i. the deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)

    Google Scholar 

  10. Gori, R., Milazzo, P., Nasti, L.: Towards an efficient verification method for monotonicity properties of chemical reaction networks. In: Bioinformatics, pp. 250–257 (2019)

    Google Scholar 

  11. Gunawardena, J.: Chemical reaction network theory for in-silico biologists. Notes (2003). http://vcp.med.harvard.edu/papers/crnt.pdf

  12. Hingant, E., Yvinec, R.: Deterministic and stochastic Becker–döring equations: past and recent mathematical developments. In: Holcman, D. (ed.) Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology, pp. 175–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62627-7_9

    Chapter  MATH  Google Scholar 

  13. Hoze, N., Holcman, D.: Coagulation-fragmentation for a finite number of particles and application to telomere clustering in the yeast nucleus. Phys. Lett. A 376(6–7), 845–849 (2012)

    Article  Google Scholar 

  14. Hozé, N., Holcman, D.: Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates. Phys. Lett. A 378(5–6), 531–534 (2014)

    Article  Google Scholar 

  15. Hoze, N., Holcman, D.: Kinetics of aggregation with a finite number of particles and application to viral capsid assembly. J. Math. Biol. 70(7), 1685–1705 (2014). https://doi.org/10.1007/s00285-014-0819-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)

    Article  Google Scholar 

  17. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  18. Kreer, M.: Classical Becker-döring cluster equations: rigorous results on metastability and long-time behaviour. Ann. Phys. 505(4), 398–417 (1993)

    Article  MathSciNet  Google Scholar 

  19. Nasti, L.: Verification of Robustness Property in Chemical Reaction Networks. Ph.D. thesis, Universitità di Pisa, Dipartimento di Informatica (2020)

    Google Scholar 

  20. Nasti, L., Gori, R., Milazzo, P.: Formalizing a notion of concentration robustness for biochemical networks. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 81–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_8

    Chapter  Google Scholar 

  21. Nasti, L., Gori, R., Milazzo, P., Poloni, F.: Efficient analysis of chemical reaction networks dynamics based on input-output monotonicity. arXiv preprint arXiv:2107.00289 (2021)

  22. Penrose, O.: Metastable states for the Becker-döring cluster equations. Commun. Math. Phys. 124(4), 515–541 (1989)

    Article  Google Scholar 

  23. Saunders, T.E.: Aggregation-fragmentation model of robust concentration gradient formation. Phys. Rev. E 91(2), 022704 (2015)

    Article  Google Scholar 

  24. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)

    Article  Google Scholar 

  25. Shinar, G., Feinberg, M.: Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Math. Biosci. 231(1), 39–48 (2011)

    Article  MathSciNet  Google Scholar 

  26. Slemrod, M.: The becker-döring equations. In:Bellomo, N., Pulvirenti, M. (eds.) Modeling and Simulation in Science, Engineering and Technology, pp. 149–171. Springer, Boston (2000). https://doi.org/10.1007/978-1-4612-0513-5_5

  27. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25(1), 1–47 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Nasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasti, L., Gori, R., Milazzo, P. (2022). Analysis and Verification of Robustness Properties in Becker-Döring Model. In: Bowles, J., Broccia, G., Pellungrini, R. (eds) From Data to Models and Back. DataMod 2021. Lecture Notes in Computer Science, vol 13268. Springer, Cham. https://doi.org/10.1007/978-3-031-16011-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16011-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16010-3

  • Online ISBN: 978-3-031-16011-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics