Abstract
Many biochemical processes in living cells involve clusters of particles. Such processes include protein aggregation and the development of intracellular concentration gradients. To study these mechanisms, we can apply coagulation-fragmentation models describing populations of interacting components. In this context, the Becker-Döring equations - theorized in 1935 - provide the simplest kinetic model to describe condensations phenomena. Experimental works on this model reveal that it exhibits robustness, defined as the system’s capability to preserve its features despite noise and fluctuations. Here, we verify the robustness of the BD model, applying our notions of initial concentration robustness (\(\alpha \)-robustness and \(\beta \)-robustness), which are related to the influence of the perturbation of the initial concentration of one species (i.e., the input) on the concentration of another species (i.e., the output) at the steady state. Then, we conclude that a new definition of robustness, namely the asymptotic robustness, is necessary to describe more accurately the model’s behavior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angeli, D., De Leenheer, P., Sontag, E.D.: On the structural monotonicity of chemical reaction networks. In: 2006 45th IEEE Conference on Decision and Control, pp. 7–12. IEEE (2006)
Ball, J.M., Carr, J.: Asymptotic behaviour of solutions to the Becker-döring equations for arbitrary initial data. Proc. R. Soc. Edinb. Sect. A Math. 108(1–2), 109–116 (1988)
Ball, J.M., Carr, J., Penrose, O.: The Becker-döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104(4), 657–692 (1986)
Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction systems with context properties. In: Suraj, Z., Czaja, L. (eds.) Proceedings of the 24th International Workshop on Concurrency, Specification and Programming, Rzeszow, Poland, September 28–30, 2015. CEUR Workshop Proceedings, vol. 1492, pp. 31–43. CEUR-WS.org (2015)
Barbuti, R., Gori, R., Milazzo, P., Nasti, L.: A survey of gene regulatory networks modelling methods: from differential equations, to Boolean and qualitative bioinspired models. J. Membr. Comput. 2(3), 207–226 (2020)
Becker, R., Döring, W.: Kinetische behandlung der keimbildung in übersättigten dämpfen. Ann. Phys. 416(8), 719–752 (1935)
Blanchini, F., Franco, E.: Structurally robust biological networks. BMC Syst. Biol. 5(1), 74 (2011)
Burton, J.: Nucleation theory. In: Berne, B.J. (eds.) Statistical Mechanics. Modern Theoretical Chemistry, vol. 5, pp. 195–234. Springer, Boston, MA (1977). https://doi.org/10.1007/978-1-4684-2553-6_6
Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors-i. the deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)
Gori, R., Milazzo, P., Nasti, L.: Towards an efficient verification method for monotonicity properties of chemical reaction networks. In: Bioinformatics, pp. 250–257 (2019)
Gunawardena, J.: Chemical reaction network theory for in-silico biologists. Notes (2003). http://vcp.med.harvard.edu/papers/crnt.pdf
Hingant, E., Yvinec, R.: Deterministic and stochastic Becker–döring equations: past and recent mathematical developments. In: Holcman, D. (ed.) Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology, pp. 175–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62627-7_9
Hoze, N., Holcman, D.: Coagulation-fragmentation for a finite number of particles and application to telomere clustering in the yeast nucleus. Phys. Lett. A 376(6–7), 845–849 (2012)
Hozé, N., Holcman, D.: Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates. Phys. Lett. A 378(5–6), 531–534 (2014)
Hoze, N., Holcman, D.: Kinetics of aggregation with a finite number of particles and application to viral capsid assembly. J. Math. Biol. 70(7), 1685–1705 (2014). https://doi.org/10.1007/s00285-014-0819-2
Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)
Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)
Kreer, M.: Classical Becker-döring cluster equations: rigorous results on metastability and long-time behaviour. Ann. Phys. 505(4), 398–417 (1993)
Nasti, L.: Verification of Robustness Property in Chemical Reaction Networks. Ph.D. thesis, Universitità di Pisa, Dipartimento di Informatica (2020)
Nasti, L., Gori, R., Milazzo, P.: Formalizing a notion of concentration robustness for biochemical networks. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 81–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_8
Nasti, L., Gori, R., Milazzo, P., Poloni, F.: Efficient analysis of chemical reaction networks dynamics based on input-output monotonicity. arXiv preprint arXiv:2107.00289 (2021)
Penrose, O.: Metastable states for the Becker-döring cluster equations. Commun. Math. Phys. 124(4), 515–541 (1989)
Saunders, T.E.: Aggregation-fragmentation model of robust concentration gradient formation. Phys. Rev. E 91(2), 022704 (2015)
Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)
Shinar, G., Feinberg, M.: Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Math. Biosci. 231(1), 39–48 (2011)
Slemrod, M.: The becker-döring equations. In:Bellomo, N., Pulvirenti, M. (eds.) Modeling and Simulation in Science, Engineering and Technology, pp. 149–171. Springer, Boston (2000). https://doi.org/10.1007/978-1-4612-0513-5_5
Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25(1), 1–47 (1969)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Nasti, L., Gori, R., Milazzo, P. (2022). Analysis and Verification of Robustness Properties in Becker-Döring Model. In: Bowles, J., Broccia, G., Pellungrini, R. (eds) From Data to Models and Back. DataMod 2021. Lecture Notes in Computer Science, vol 13268. Springer, Cham. https://doi.org/10.1007/978-3-031-16011-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-16011-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16010-3
Online ISBN: 978-3-031-16011-0
eBook Packages: Computer ScienceComputer Science (R0)