Skip to main content

An End-to-End Framework for Evaluating Explainable Deep Models: Application to Historical Document Image Segmentation

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Abstract

Recently, researchers have raised several questions related to the explainability of deep learning (DL) model predictions. Indeed, the inherent and undeniable risk remains the abandonment of human control and monitoring in favor of these DL models. Thus, many tools that allow humans to verify the agreement between the DL model predictions and ground truth have been explored. These tools fall into the field of explainable artificial intelligence (XAI) which focuses on proposing methods to explain how the AI-based systems generate their decisions. To contribute to this purpose, we propose in this paper a framework, called DocSegExp, for explaining the decisions of DL models applied for historical document image segmentation (HDIS). The proposed framework is evaluated using three XAI attribution methods on two DL architectures that are performed on a large-scale synthetic dataset having 12K pixel-wise annotated images. Besides, we propose an adaptation of four state-of-the-art metrics (that were previously introduced in the context of object classification) in order to evaluate the generated explanations in the case of a pixel-wise segmentation task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.archives.nat.tn/.

  2. 2.

    https://github.com/monniert/docExtractor.

References

  1. Alber, M.: Software and application patterns for explanation methods. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 399–433 (2019)

    Google Scholar 

  2. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv:1711.06104 (2017)

  3. Anders, C., Weber, L., Neumann, D., Samek, W., Müller, K., Lapuschkin, S.: Finding and removing Clever Hans: using explanation methods to debug and improve deep models. Inf. Fusion, 261–295 (2022)

    Google Scholar 

  4. Arras, L., Osman, A., Samek, W.: CLEVR-XAI: a benchmark dataset for the ground truth evaluation of neural network explanations. Inf. Fusion, 14–40 (2022)

    Google Scholar 

  5. Aubry, M.: Deep learning for historical data analysis. In: SUMAC (2021)

    Google Scholar 

  6. Hastie, T., Tibshirani, R.: Generalized additive models. Statis. Sci. 297–310 (1986)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: ICML, pp. 2668–2677 (2018)

    Google Scholar 

  9. Kokhlikyan, N., et al.: Captum: a unified and generic model interpretability library for PyTorch. arXiv:2009.07896 (2020)

  10. Lin, Y., Lee, W., Celik, Z.: What do you see? Evaluation of explainable artificial intelligence (XAI) interpretability through neural backdoors. arXiv:2009.10639 (2020)

  11. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy (2021)

    Google Scholar 

  12. Lombardi, F., Marinai, S.: Deep learning for historical document analysis and recognition - a survey. J. Imaging (2020)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  14. Markewich, L., et al.: Segmentation for document layout analysis: not dead yet. Int. J. Doc. Anal. Recogn. (2022)

    Google Scholar 

  15. Mechi, O., Mehri, M., Ingold, R., Amara, N.E.B.: A two-step framework for text line segmentation in historical Arabic and Latin document images. Int. J. Doc. Anal. Recogn. 197–218 (2021)

    Google Scholar 

  16. Mehri, M., Héroux, P., Mullot, R., Moreux, J., Coüasnon, B., Barrett, B.: ICDAR2019 competition on historical book analysis - HBA2019. In: ICDAR, pp. 1488–1493 (2019)

    Google Scholar 

  17. Monnier, T., Aubry, M.: docExtractor: an off-the-shelf historical document element extraction. In: ICFHR, pp. 91–96 (2020)

    Google Scholar 

  18. Montavon, G.: Gradient-based vs. propagation-based explanations: an axiomatic comparison. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 253–265 (2019)

    Google Scholar 

  19. Muddamsetty, S., Jahromi, M., Ciontos, A., Fenoy, L., Moeslund, T.: Visual explanation of black-box model: similarity difference and uniqueness (SIDU) method. Pattern Recogn. (2022)

    Google Scholar 

  20. Oliveira, S., Seguin, B., Kaplan, F.: dhSegment: a generic deep-learning approach for document segmentation. In: ICFHR, pp. 7–12 (2018)

    Google Scholar 

  21. Poppi, S., Cornia, M., Baraldi, L., Cucchiara, R.: Revisiting the evaluation of class activation mapping for explainability: a novel metric and experimental analysis. In: CVPR, pp. 2299–2304 (2021)

    Google Scholar 

  22. Rauber, P., Fadel, S., Falcao, A., Telea, A.: Visualizing the hidden activity of artificial neural networks. IEEE Trans. Visual. Comput. Graph. 101–110 (2016)

    Google Scholar 

  23. Ribeiro, M., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier. In: SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Samek, W., Montavon, G., Lapuschkin, S., Anders, C., Müller, K.: Explaining deep neural networks and beyond: a review of methods and applications. IEEE, 247–278 (2021)

    Google Scholar 

  26. Schorr, C., Goodarzi, P., Chen, F., Dahmen, T.: Neuroscope: an explainable AI toolbox for semantic segmentation and image classification of convolutional neural nets. Appl. Sci. (2021)

    Google Scholar 

  27. Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  28. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. arXiv:1704.02685 (2017)

  29. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: Learning important features through propagating activation differences. arXiv:1605.01713 (2016)

  30. Simistira, F., Seuret, M., Eichenberger, N., Garz, A., Liwicki, M., Ingold, R.: DIVA-HisDB: a precisely annotated large dataset of challenging Medieval manuscripts. In: ICFHR, pp. 471–476 (2016)

    Google Scholar 

  31. Singh, A., Sengupta, S., Lakshminarayanan, V.: Explainable deep learning models in medical image analysis. J. Imaging (2020)

    Google Scholar 

  32. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 427–437 (2009)

    Google Scholar 

  33. Yeh, C., Hsieh, C., Suggala, A., Inouye, D., Ravikumar, P.: On the (in) fidelity and sensitivity of explanations. Adv. Neural Information Processing Systems (2019)

    Google Scholar 

  34. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. arXiv:1506.06579 (2015)

  35. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  36. Zhou, B., Bau, D., Oliva, A., Torralba, A.: Comparing the interpretability of deep networks via network dissection. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 243–252 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iheb Brini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brini, I., Mehri, M., Ingold, R., Essoukri Ben Amara, N. (2022). An End-to-End Framework for Evaluating Explainable Deep Models: Application to Historical Document Image Segmentation. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics