Skip to main content

RingNet: Geometric Deep Representation Learning for 3D Multi-domain Protein Shape Retrieval

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13501))

Included in the following conference series:

  • 1251 Accesses

Abstract

Many applications use three-dimensional polygon meshes as geometric representation to achieve central tasks, such as 3D object retrieval and classification. However, implementing a deep learning approach dedicated to 3D meshes is a bit hard due to the complexity and irregularity of the mesh surface representation. In this paper, we propose a new geometric deep learning approach dedicated to representation learning, which applies convolutional operations on 3D meshes. In particular, we introduce a ring-unit convolutional operator that aggregates two graphs deduced from the mesh surface. Our network can learn highly discriminating features by avoiding complexity and irregularity problems.

We experimentally validated our approach on 3D shape classification tasks and the multi-domain protein shape retrieval challenge. A comparison with the state-of-the-art approaches proved the relevance of the learned features to the accuracy of 3D object classification and retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, E., et al.: A survey on deep learning advances on different 3D data representations. arXiv preprint arXiv:1808.01462 (2018)

  2. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV workshops), pp. 1626ā€“1633. IEEE (2011)

    Google Scholar 

  3. Bronstein, M.M., Bruna, J., Cohen, T., Veličković, P.: Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021)

  4. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  5. Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612), 709ā€“713 (1983)

    Article  Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural. Inf. Process. Syst. 29, 3844ā€“3852 (2016)

    Google Scholar 

  7. Derr, T., Ma, Y., Tang, J.: Signed graph convolutional networks. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 929ā€“934. IEEE (2018)

    Google Scholar 

  8. Du, J., Zhang, S., Wu, G., Moura, J.M., Kar, S.: Topology adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2017)

  9. Fang, Y., et al.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319ā€“2328 (2015)

    Google Scholar 

  10. Feng, Y., Feng, Y., You, H., Zhao, X., Gao, Y.: MeshNet: mesh neural network for 3D shape representation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8279ā€“8286 (2019)

    Google Scholar 

  11. HajMohamed, H., Belaid, S., Naanaa, W., Romdhane, L.B.: Local commute-time guided MDS for 3D non-rigid object retrieval. Appl. Intell. 48(9), 2873ā€“2883 (2018)

    Article  Google Scholar 

  12. HajMohamed, H., Belaid, S., Naanaa, W., Romdhane, L.B.: Deep sparse dictionary-based representation for 3D non-rigid shape retrieval. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 1070ā€“1077 (2021)

    Google Scholar 

  13. He, W., Jiang, Z., Zhang, C., Sainju, A.M.: CurvaNet: geometric deep learning based on directional curvature for 3D shape analysis. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2214ā€“2224 (2020)

    Google Scholar 

  14. Kihara, D., Sael, L., Chikhi, R., Esquivel-Rodriguez, J.: Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr. Protein Pept. Sci. 12(6), 520ā€“530 (2011)

    Article  Google Scholar 

  15. Langenfeld, F., et al.: Shrec 2020: multi-domain protein shape retrieval challenge. Comput. Graph. 91, 189ā€“198 (2020)

    Article  Google Scholar 

  16. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 37ā€“45 (2015)

    Google Scholar 

  17. Milano, F., Loquercio, A., Rosinol, A., Scaramuzza, D., Carlone, L.: Primal-dual mesh convolutional neural networks. arXiv preprint arXiv:2010.12455 (2020)

  18. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115ā€“5124 (2017)

    Google Scholar 

  19. Otu, E., Zwiggelaar, R., Hunter, D., Liu, Y.: Nonrigid 3D shape retrieval with HAPPS: a novel hybrid augmented point pair signature. In: 2019 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 662ā€“668. IEEE (2019)

    Google Scholar 

  20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652ā€“660 (2017)

    Google Scholar 

  21. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  22. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61ā€“80 (2008)

    Article  Google Scholar 

  23. Zhang, Y., Rabbat, M.: A graph-CNN for 3D point cloud classification. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6279ā€“6283. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hela Haj Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haj Mohamed, H., Belaid, S., Naanaa, W. (2022). RingNet: Geometric Deep Representation Learning for 3D Multi-domain Protein Shape Retrieval. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics