Skip to main content

Impact of Similarity Measure on the Quality of Communities Detected in Social Network by Hierarchical Clustering

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Abstract

The starting point of any hierarchical clustering method is the definition of the similarity measure between objects. In case of a social network the similarity must be inferred from the adjacency relationships between vertices. The main contribution of the paper is to investigate the impact of similarity measure on the quality of clusters (communities) detected in an organizational social network by agglomerative hierarchical clustering method. Three different similarity measures have been considered in the computational experiment. The quality of communities generated by the proposed method has been compared with the quality of clusters generated by the Louvain algorithm using modularity. Because of the fact that the computational experiment has been carried out on the network referring to real public organization, the results of the experiment have been also compared with the structure of the investigated organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbucha, D., Szyman, P.: Detecting communities in organizational social network based on e-mail communication. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies. SIST, vol. 238, pp. 15–24. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-2765-1_2

    Chapter  Google Scholar 

  2. Barbucha, D., Szyman, P.: Identifying key actors in organizational social network based on e-mail communication. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds.) ICCCI 2021. CCIS, vol. 1463, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88113-9_1

    Chapter  Google Scholar 

  3. Blondel, D.V., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, 10008 (2008)

    Article  MATH  Google Scholar 

  4. Christidis, P., Losada, A.G.: Email based institutional network analysis: applications and risks. Social Sci. 8, 306 (2019)

    Article  Google Scholar 

  5. Creamer, G.G., Stolfo, J.S., Creamer, M., Hershkop, S., Rowe R.: Discovering Organizational Hierarchy through a Corporate Ranking Algorithm: The Enron Case, Complexity, vol. 2022, Article ID 8154476, 18 pages (2022)

    Google Scholar 

  6. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  7. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 11(2), 37–50 (1912)

    Article  Google Scholar 

  8. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543. ACM (2002)

    Google Scholar 

  9. Kolli, N., Narayanaswamy, B.: Analysis of e-mail communication using a social network framework for crisis detection in an organization. Procedia-Social Behav. Sci. 100, 57–67 (2013)

    Article  Google Scholar 

  10. Leicht, E., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E 73(2), 026120 (2006)

    Article  Google Scholar 

  11. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  12. Nguyen H., Zheng, R.: A data-driven study of influences in Twitter communities. In: Proceedings of the IEEE International Conference on Communications, pp. 3938–3944. IEEE, Sydney (2014)

    Google Scholar 

  13. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algor. Appl. 10(2), 191–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. R software environment. https://www.r-project.org/

  15. R iGraph. https://igraph.org/r/

  16. R LSA. https://cran.r-project.org/web/packages/lsa/

  17. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. PNAS 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  18. Raut, P., Chawhan, R., Joshi, T., Kasle, P.: Classification of power relations based on email exchange. In: Proceedings of the IEEE International Conference on Computing, Power and Communication Technologies, New Delhi, India, pp. 486–489 (2020)

    Google Scholar 

  19. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1986)

    MATH  Google Scholar 

  20. Sörensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Biologiske Skrifter 5, 1–34 (1948)

    Google Scholar 

  21. Wright, D.K., Hinson, M.: Tracking how social and other digital media are being used in public relations practice: a twelve-year study. Public Relat. J. 11(1), 1–30 (2017)

    Google Scholar 

  22. Xu, R., Wunsch, D.: Clustering. John Wiley & Sons, Piscataway (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Barbucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szyman, P., Barbucha, D. (2022). Impact of Similarity Measure on the Quality of Communities Detected in Social Network by Hierarchical Clustering. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics