Skip to main content

Collinear Data Structures and Interaction Models

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13501))

Included in the following conference series:

  • 1218 Accesses

Abstract

Models of interactions between multiple fetaures (genes) can be obtained from collinear data sets consisting of multivariate feature vectors. Such models can be designed by minimizing the collinearity criterion function with the basis echange algorithm.

The collinearity criterion functions are defined on learning data subsets representing selected categories (e.g. diseases). Based on the minimization of the collinearity functions, interaction models specific to each category can be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hand, D., Smyth, P., Mannila, H.: Principles of Data Mining. MIT Press, Cambridge (2001)

    Google Scholar 

  2. Duda, O.R., Hart, P.E., Stork, D.G.: Pattern classification. J. Wiley, New York (2001)

    MATH  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Verlag (2006)

    Google Scholar 

  4. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice- Hall Inc, Englewood Cliffs (2002)

    MATH  Google Scholar 

  5. Bobrowski, L.: Computing on vertices in data mining. In: Data Mining – Concepts and Applications, Ed. by Ciza Thomas, INTECH OPEN 2021. ISBN 978-1-83969-267-3

    Google Scholar 

  6. Bobrowski, L.: Small samples of multidimensional feature vectors. In: Hernes, M., Wojtkiewicz, K., Szczerbicki, E. (eds.) ICCCI 2020. CCIS, vol. 1287, pp. 87–98. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63119-2_8

    Chapter  Google Scholar 

  7. Bobrowski, L.: Data Exploration and Linear Separability, pp. 1–172, Lambert Academic Publishing (2019)

    Google Scholar 

  8. Bobrowski, L.: Complexes of low dimensional linear classifiers with L1 margins. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds.) ACIIDS 2021. LNCS (LNAI), vol. 12672, pp. 29–40. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73280-6_3

    Chapter  Google Scholar 

  9. Bobrowski, L., Zabielski, P.: Flat patterns extraction with collinearity models. In: 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016 , 12–16 September 2016, Oulu Finland, IEEE Conference Publishing Services (CPS)

    Google Scholar 

  10. Simonnard, M.: Linear Programming, Prentice – Hall. Englewood Cliffs, New York (1966)

    MATH  Google Scholar 

  11. Bobrowski, L., Bołdak, C.: Stepwise inversion of large matrices with the Gauss-Jordan vector transformation. J. Adv. Math. Comput. Sci. (2022)

    Google Scholar 

  12. Bobrowski, L., Łukaszuk, T.: Relaxed Linear Separability (RLS) Approach to Feature (Gene) Subset Selection, p. 103 – 118 in: Selected Works in Bioinformatics, Edited by: Xuhua Xia, INTECH OPEN 2011

    Google Scholar 

  13. Bobrowski, L., et al.: Separating gene clustering in the rare mucopolysaccharidosis disease. J. Appl. Genet. 63(2), 361–368 (2022). https://doi.org/10.1007/s13353-022-00691-2

    Article  Google Scholar 

Download references

Acknowledgments

The presented study was supported by the grant WZ/WI-IIT/3/2020 from the Bialystok University of Technology and funded from the resources for research by the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Bobrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bobrowski, L. (2022). Collinear Data Structures and Interaction Models. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics