Abstract
Agent-based systems follow similar rules as object-oriented models. However, they distinguish agents as entities that can perceive their environment, process information about it, change it via actions, and interact with other agents. In this paper, the authors proposed some solutions coupled to creating models of such environments on a high level of abstraction, considering the applicability of these models in real-world projects. As a result, a conceptual environment model has been elaborated and proposed. The presented case study of the AriaDNA Life system verifies the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-based neural agent-environment systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6006–6013 (2019). https://doi.org/10.1609/aaai.v33i01.33016006
DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)
Durfee, E.H., Lesser, V.R., Corkill, D.D.: Trends in cooperative distributed problem solving. IEEE Trans. Knowl. Data Eng. (1989)
Guizzardi, G., Wagner, G.: Towards ontological foundations for agent modelling concepts using the unified fundational ontology (UFO). In: Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low, G., Winikoff, M. (eds.) AOIS -2004. LNCS (LNAI), vol. 3508, pp. 110–124. Springer, Heidelberg (2005). https://doi.org/10.1007/11426714_8
Helbing, D.: Agent-Based Modeling, pp. 25–70. Springer, Heidelberg (2012)
Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments in multi-agent simulation. Auton. Agent. Multi. Agent. Syst. 14(1), 87–116 (2006)
Huk, M.: Non-uniform initialization of inputs groupings in contextual neural networks. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_36
Jodłowiec, M., Krótkiewicz, M., Palak, R., Wojtkiewicz, K.: Graph-based crowd definition for assessing wise crowd measures. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11683, pp. 66–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28377-3_6
Monu, K.: Intelligent agents as a modelling paradigm. Ph.D. thesis, University of British Columbia (2005). https://open.library.ubc.ca/collections/ubctheses/831/items/1.0092420
Odell, J.J., Van Dyke Parunak, H., Fleischer, M., Brueckner, S.: Modeling agents and their environment. In: Giunchiglia, F., Odell, J., Weiß, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 16–31. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36540-0_2
Palak, R., Wojtkiewicz, K.: The formal framework for collective systems. Axioms 10(2), 91 (2021)
Acknowledgment
The research and this paper was supported by the National Centre for Research and Development through the project name “Active Search and Rescue System (AS &RS) - AriaDNA Life” under POIR.01.01.01-00-1081/18-00 number.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Krótkiewicz, M., Wojtkiewicz, K., Jodłowiec, M., Palak, R., Szczerbicki, M., Nawrocki, P. (2022). An Approach to Modeling a Real-Time Updated Environment Based on Messages from Agents. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-16014-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16013-4
Online ISBN: 978-3-031-16014-1
eBook Packages: Computer ScienceComputer Science (R0)