Skip to main content

An Approach to Modeling a Real-Time Updated Environment Based on Messages from Agents

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Abstract

Agent-based systems follow similar rules as object-oriented models. However, they distinguish agents as entities that can perceive their environment, process information about it, change it via actions, and interact with other agents. In this paper, the authors proposed some solutions coupled to creating models of such environments on a high level of abstraction, considering the applicability of these models in real-world projects. As a result, a conceptual environment model has been elaborated and proposed. The presented case study of the AriaDNA Life system verifies the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-based neural agent-environment systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6006–6013 (2019). https://doi.org/10.1609/aaai.v33i01.33016006

  2. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  3. Durfee, E.H., Lesser, V.R., Corkill, D.D.: Trends in cooperative distributed problem solving. IEEE Trans. Knowl. Data Eng. (1989)

    Google Scholar 

  4. Guizzardi, G., Wagner, G.: Towards ontological foundations for agent modelling concepts using the unified fundational ontology (UFO). In: Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low, G., Winikoff, M. (eds.) AOIS -2004. LNCS (LNAI), vol. 3508, pp. 110–124. Springer, Heidelberg (2005). https://doi.org/10.1007/11426714_8

    Chapter  Google Scholar 

  5. Helbing, D.: Agent-Based Modeling, pp. 25–70. Springer, Heidelberg (2012)

    Google Scholar 

  6. Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments in multi-agent simulation. Auton. Agent. Multi. Agent. Syst. 14(1), 87–116 (2006)

    Article  Google Scholar 

  7. Huk, M.: Non-uniform initialization of inputs groupings in contextual neural networks. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_36

    Chapter  Google Scholar 

  8. Jodłowiec, M., Krótkiewicz, M., Palak, R., Wojtkiewicz, K.: Graph-based crowd definition for assessing wise crowd measures. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11683, pp. 66–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28377-3_6

    Chapter  Google Scholar 

  9. Monu, K.: Intelligent agents as a modelling paradigm. Ph.D. thesis, University of British Columbia (2005). https://open.library.ubc.ca/collections/ubctheses/831/items/1.0092420

  10. Odell, J.J., Van Dyke Parunak, H., Fleischer, M., Brueckner, S.: Modeling agents and their environment. In: Giunchiglia, F., Odell, J., Weiß, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 16–31. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36540-0_2

    Chapter  Google Scholar 

  11. Palak, R., Wojtkiewicz, K.: The formal framework for collective systems. Axioms 10(2), 91 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

The research and this paper was supported by the National Centre for Research and Development through the project name “Active Search and Rescue System (AS &RS) - AriaDNA Life” under POIR.01.01.01-00-1081/18-00 number.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Jodłowiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krótkiewicz, M., Wojtkiewicz, K., Jodłowiec, M., Palak, R., Szczerbicki, M., Nawrocki, P. (2022). An Approach to Modeling a Real-Time Updated Environment Based on Messages from Agents. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics