Skip to main content

Towards Optimizing Malware Detection: An Approach Based on Generative Adversarial Networks and Transformers

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Abstract

Nowadays, cybercriminals are carrying out many forms of cyberattacks. Malware attacks, in particular, have emerged as one of the most challenging concerns in the cybersecurity area, as well as a key weapon used by cybercriminals. Malware is a term used to describe harmful software. Malware can be used to modify or destroy data on target computers, steal private information, control systems to attack other devices, host and disseminate illicit material, and disrupt vital infrastructures. As a result, many tools and approaches for detecting and mitigating malware attacks have been developed. Despite the improvement and rapid expansion of malware defense techniques, cybercriminals are able to develop more sophisticated and advanced malware that can defeat state-of-the-art security and anti-malware solutions. This paper proposes a novel approach based on generative adversarial networks and transformers to improve malware detection performance. By using generative adversarial transformers, the proposed approach aims to increase the malware data size and solve the data imbalance distribution issue. Promising experimental results showed an improved accuracy of malware detection of 3% using several pre-trained models when solving the problem of unbalanced data.

This work is supported by Prince Sultan University in Saudi Arabia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A Ghaleb, F., et al.: Misbehavior-aware on-demand collaborative intrusion detection system using distributed ensemble learning for vanet. Electronics 9(9), 1411 (2020)

    Google Scholar 

  2. Almomani, I., AlKhayer, A., El-Shafai, W.: Novel ransomware hiding model using HEVC steganography approach. CMC-Comput. Mater. Continua 70(1), 1209–1228 (2021)

    Article  Google Scholar 

  3. Almomani, I., Alkhayer, A., El-Shafai, W.: A crypto-steganography approach for hiding ransomware within hevc streams in android iot devices. Sensors 22(6), 2281 (2022)

    Article  Google Scholar 

  4. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: Dl-droid: deep learning based android malware detection using real devices. Comput. Secur. 89, 101663 (2020)

    Article  Google Scholar 

  5. Arad Hudson, D., Zitnick, L.: Compositional transformers for scene generation. Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  6. Aslan, Ö.A., Samet, R.: A comprehensive review on malware detection approaches. IEEE Access 8, 6249–6271 (2020)

    Article  Google Scholar 

  7. Baig, M., Zavarsky, P., Ruhl, R., Lindskog, D.: The study of evasion of packed PE from static detection. In: World Congress on Internet Security (WorldCIS-2012), pp. 99–104. IEEE (2012)

    Google Scholar 

  8. Bello, I., et al.: Detecting ransomware attacks using intelligent algorithms: recent development and next direction from deep learning and big data perspectives. J. Ambient. Intell. Humaniz. Comput. 12(9), 8699–8717 (2021)

    Article  Google Scholar 

  9. Ben Atitallah, S., Driss, M., Almomani, I.: A novel detection and multi-classification approach for IoT-malware using random forest voting of fine-tuning convolutional neural networks. Sensors 22(11), 4302 (2022)

    Article  Google Scholar 

  10. Ben Atitallah, S., Driss, M., Boulila, W., Ben Ghezala, H.: Randomly initialized convolutional neural network for the recognition of covid-19 using x-ray images. Int. J. Imaging Syst. Technol. 32(1), 55–73 (2022)

    Article  Google Scholar 

  11. Ben Atitallah, S., Driss, M., Boulila, W., Koubaa, A., Ben Ghezala, H.: Fusion of convolutional neural networks based on dempster-shafer theory for automatic pneumonia detection from chest x-ray images. Int. J. Imaging Syst. Technol. 32(2), 658–672 (2022)

    Article  Google Scholar 

  12. Catak, F.O., Yazı, A.F., Elezaj, O., Ahmed, J.: Deep learning based sequential model for malware analysis using windows exe API calls. PeerJ Comput. Sci. 6, e285 (2020)

    Article  Google Scholar 

  13. Chakkaravarthy, S.S., Sangeetha, D., Vaidehi, V.: A survey on malware analysis and mitigation techniques. Comput. Sci. Rev. 32, 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  14. Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299–12310 (2021)

    Google Scholar 

  15. Damaševičius, R., Venčkauskas, A., Toldinas, J., Grigaliūnas, Š: Ensemble-based classification using neural networks and machine learning models for windows PE malware detection. Electronics 10(4), 485 (2021)

    Article  Google Scholar 

  16. Darabian, H., et al.: Detecting cryptomining malware: a deep learning approach for static and dynamic analysis. J. Grid Comput. 18(2), 293–303 (2020)

    Article  Google Scholar 

  17. Driss, M., Hasan, D., Boulila, W., Ahmad, J.: Microservices in IoT security: current solutions, research challenges, and future directions. Procedia Comput. Sci. 192, 2385–2395 (2021)

    Article  Google Scholar 

  18. Dutta, N., Jadav, N., Tanwar, S., Sarma, H.K.D., Pricop, E.: Introduction to malware analysis. In: Cyber Security: Issues and Current Trends. SCI, vol. 995, pp. 129–141. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6597-4_7

    Chapter  Google Scholar 

  19. Fernando, D.W., Komninos, N., Chen, T.: A study on the evolution of ransomware detection using machine learning and deep learning techniques. IoT 1(2), 551–604 (2020)

    Article  Google Scholar 

  20. Ghaleb, F.A., Maarof, M.A., Zainal, A., Al-rimy, B.A.S., Alsaeedi, A., Boulila, W.: Ensemble-based hybrid context-aware misbehavior detection model for vehicular ad hoc network. Remote Sens. 11(23), 2852 (2019)

    Article  Google Scholar 

  21. Hudson, D.A., Zitnick, L.: Generative adversarial transformers. In: International Conference on Machine Learning, pp. 4487–4499. PMLR (2021)

    Google Scholar 

  22. Melhim, L.K.B., Jemmali, M., Alharbi, M.: Network monitoring enhancement based on mathematical modeling. In: 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), pp. 1–4. IEEE (2019)

    Google Scholar 

  23. Melhim, L.K.B., Jemmali, M., AsSadhan, B., Alquhayz, H.: Network traffic reduction and representation. Int. J. Sensor Networks 33(4), 239–249 (2020)

    Article  Google Scholar 

  24. Oliveira, A.: Malware analysis datasets: Raw pe as image. IEEE dataport (2019)

    Google Scholar 

  25. Roseline, S.A., Geetha, S.: A comprehensive survey of tools and techniques mitigating computer and mobile malware attacks. Comput. Electr. Eng. 92, 107143 (2021)

    Google Scholar 

  26. Sarhan, A., Jemmali, M., Ben Hmida, A.: Two routers network architecture and scheduling algorithms under packet category classification constraint. In: The 5th International Conference on Future Networks & Distributed Systems, pp. 119–127 (2021)

    Google Scholar 

  27. Shamsolmoali, P., et al.: Image synthesis with adversarial networks: a comprehensive survey and case studies. Inf. Fusion 72, 126–146 (2021)

    Google Scholar 

  28. Vinayakumar, R., Alazab, M., Soman, K., Poornachandran, P., Venkatraman, S.: Robust intelligent malware detection using deep learning. IEEE Access 7, 46717–46738 (2019)

    Article  Google Scholar 

  29. Wang, F., Chai, G., Li, Q., Wang, C.: An efficient deep unsupervised domain adaptation for unknown malware detection. Symmetry 14(2), 296 (2022)

    Article  Google Scholar 

  30. Xing, X., Jin, X., Elahi, H., Jiang, H., Wang, G.: A malware detection approach using autoencoder in deep learning. IEEE Access (2022)

    Google Scholar 

  31. Zhao, J., Masood, R., Seneviratne, S.: A review of computer vision methods in network security. IEEE Commun. Surv. Tutorials (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadii Boulila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alzahem, A., Boulila, W., Driss, M., Koubaa, A., Almomani, I. (2022). Towards Optimizing Malware Detection: An Approach Based on Generative Adversarial Networks and Transformers. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., TrawiĹ„ski, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics