Abstract
Spectrum sensing based on Beamforming, like others classification problem, require feature selection to perform learning algorithms and enhance the classification task. This paper proposes a novel version of the Dingo Optimization Algorithm (DOA) to optimize feature selection for a Deep Neural Network (DNN) classifier. Two improvements are introduced to avoid the premature convergence problem and stagnation in the local optima of the original DOA. First, the chaos strategy is executed to produce a high level of diversification in the algorithm, which improves its ability to escape from potential local optimums. Second, the weight factor is introduced to boot up the search process to the global optima. Here, the aim is to improve the DOA for feature selection in the deep learning approach in order to enhance the performance of blind spectrum sensing based on Beamforming in the context of cognitive radio (CR). Through simulations results, we illustrate that our algorithm, called Chaotic Dingo Optimization Algorithm (CDOA), outperforms the original one and a set of state-of-the-art optimization algorithms (i.e., HS, BBO, PSO, and SA) for feature selection in the learning approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarts, E., Korst, J., Michiels, W.: Simulated annealing. ek burke y g. kendall, editores, search methodologies (2005)
Alatas, B.: Chaotic harmony search algorithms. Appl. Math. Comput. 216(9), 2687–2699 (2010)
Arora, S., Singh, S.: An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017)
Awad, A.A., Ali, A.F., Gaber, T.: Feature selection method based on chaotic maps and butterfly optimization algorithm. In: Hassanien, A.-E., Azar, A.T., Gaber, T., Oliva, D., Tolba, F.M. (eds.) AICV 2020. AISC, vol. 1153, pp. 159–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44289-7_16
Ben Chaabane, S., Belazi, A., Kharbech, S., Bouallegue, A., Clavier, L.: Improved salp swarm optimization algorithm: application in feature weighting for blind modulation identification. Electronics 10(16), 2002 (2021)
Biswas, A., Mishra, K., Tiwari, S., Misra, A.: Physics-inspired optimization algorithms: a survey. J. Optim. 2013 (2013)
Bouallegue, K., Crussiere, M., Kharbech, S.: SVM assisted primary user-detection for non-cooperative cognitive radio networks. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–5. IEEE (2020)
Bouallegue, K., Dayoub, I., Gharbi, M.: Spectrum sensing for wireless communications using energy ratio and beamforming. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)
Bouallegue, K., Dayoub, I., Gharbi, M., Hassan, K.: A cost-effective approach for spectrum sensing using beamforming. Phys. Commun. 22, 1–8 (2017)
Chaabane, S.B., Kharbech, S., Belazi, A., Bouallegue, A.: Improved whale optimization algorithm for SVM model selection: application in medical diagnosis. In: 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6. IEEE (2020)
Chen, H., Li, W., Yang, X.: A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Syst. Appl. 158, 113612 (2020)
Dolinina, O., Pechenkin, V., Mansurova, M., Tolek, D., Ixsanov, S.: Algorithmic approach to building a route for the removal of household waste with associated additional loads in the “Smart Clean City” project. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawinski, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 745–755. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88081-1_56
Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_9
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS 1995: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE (1995)
Farah, A., Belazi, A.: A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn. 93(3), 1451–1480 (2018)
Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)
García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)
Ghaemi, M., Feizi-Derakhshi, M.R.: Feature selection using forest optimization algorithm. Pattern Recogn. 60, 121–129 (2016)
Hernes, M., Wojtkiewicz, K., Szczerbicki, E. (eds.): ICCCI 2020. CCIS, vol. 1287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63119-2
Hussein, A.H., Fouda, H.S., Abdullah, H.H., Khalaf, A.A.: A highly efficient spectrum sensing approach based on antenna arrays beamforming. IEEE Access 8, 25184–25197 (2020)
Koçkaya, K., Develi, İ.: Spectrum sensing in cognitive radio networks: threshold value optimization and analysis (2020)
Li, M.W., Wang, Y.T., Geng, J., Hong, W.C.: Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dyn. 103(1), 1167–1193 (2021)
Liu, Z., Blasch, E., John, V.: Statistical comparison of image fusion algorithms: recommendations. Inf. Fusion 36, 251–260 (2017)
Morozkin, P., Swynghedauw, M., Trocan, M.: Neural network based eye tracking. In: Nguyen, N.T., Papadopoulos, G.A., Jedrzejowicz, P., Trawinski, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 600–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_58
Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3(1), 1–16 (2011)
Peraza-Vázquez, H., et al.: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies. Math. Prob. Eng. 2021 (2021)
Pourbahrami, S.: Improving PSO global method for feature selection according to iterations global search and chaotic theory. arXiv preprint arXiv:1811.08701 (2018)
dos Santos Coelho, L., Mariani, V.C.: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst. Appl. 34(3), 1905–1913 (2008)
Sayed, G.I., Khoriba, G., Haggag, M.H.: A novel chaotic SALP swarm algorithm for global optimization and feature selection. Appl. Intell. 48(10), 3462–3481 (2018)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
Zhu, H., Qi, W., Ge, J., Liu, Y.: Analyzing devaney chaos of a sine-cosine compound function system. Int. J. Bifurcation Chaos 28(14), 1850176 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ben Chaabane, S., Bouallegue, K., Belazi, A., Kharbech, S., Bouallegue, A. (2022). Chaotic Dingo Optimization Algorithm: Application in Feature Selection for Beamforming Aided Spectrum Sensing. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_52
Download citation
DOI: https://doi.org/10.1007/978-3-031-16014-1_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16013-4
Online ISBN: 978-3-031-16014-1
eBook Packages: Computer ScienceComputer Science (R0)