Skip to main content

Chaotic Dingo Optimization Algorithm: Application in Feature Selection for Beamforming Aided Spectrum Sensing

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13501))

Included in the following conference series:

  • 1012 Accesses

Abstract

Spectrum sensing based on Beamforming, like others classification problem, require feature selection to perform learning algorithms and enhance the classification task. This paper proposes a novel version of the Dingo Optimization Algorithm (DOA) to optimize feature selection for a Deep Neural Network (DNN) classifier. Two improvements are introduced to avoid the premature convergence problem and stagnation in the local optima of the original DOA. First, the chaos strategy is executed to produce a high level of diversification in the algorithm, which improves its ability to escape from potential local optimums. Second, the weight factor is introduced to boot up the search process to the global optima. Here, the aim is to improve the DOA for feature selection in the deep learning approach in order to enhance the performance of blind spectrum sensing based on Beamforming in the context of cognitive radio (CR). Through simulations results, we illustrate that our algorithm, called Chaotic Dingo Optimization Algorithm (CDOA), outperforms the original one and a set of state-of-the-art optimization algorithms (i.e., HS, BBO, PSO, and SA) for feature selection in the learning approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. ek burke y g. kendall, editores, search methodologies (2005)

    Google Scholar 

  2. Alatas, B.: Chaotic harmony search algorithms. Appl. Math. Comput. 216(9), 2687–2699 (2010)

    MATH  Google Scholar 

  3. Arora, S., Singh, S.: An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017)

    Article  MATH  Google Scholar 

  4. Awad, A.A., Ali, A.F., Gaber, T.: Feature selection method based on chaotic maps and butterfly optimization algorithm. In: Hassanien, A.-E., Azar, A.T., Gaber, T., Oliva, D., Tolba, F.M. (eds.) AICV 2020. AISC, vol. 1153, pp. 159–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44289-7_16

    Chapter  Google Scholar 

  5. Ben Chaabane, S., Belazi, A., Kharbech, S., Bouallegue, A., Clavier, L.: Improved salp swarm optimization algorithm: application in feature weighting for blind modulation identification. Electronics 10(16), 2002 (2021)

    Article  Google Scholar 

  6. Biswas, A., Mishra, K., Tiwari, S., Misra, A.: Physics-inspired optimization algorithms: a survey. J. Optim. 2013 (2013)

    Google Scholar 

  7. Bouallegue, K., Crussiere, M., Kharbech, S.: SVM assisted primary user-detection for non-cooperative cognitive radio networks. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–5. IEEE (2020)

    Google Scholar 

  8. Bouallegue, K., Dayoub, I., Gharbi, M.: Spectrum sensing for wireless communications using energy ratio and beamforming. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)

    Google Scholar 

  9. Bouallegue, K., Dayoub, I., Gharbi, M., Hassan, K.: A cost-effective approach for spectrum sensing using beamforming. Phys. Commun. 22, 1–8 (2017)

    Article  Google Scholar 

  10. Chaabane, S.B., Kharbech, S., Belazi, A., Bouallegue, A.: Improved whale optimization algorithm for SVM model selection: application in medical diagnosis. In: 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6. IEEE (2020)

    Google Scholar 

  11. Chen, H., Li, W., Yang, X.: A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Syst. Appl. 158, 113612 (2020)

    Article  Google Scholar 

  12. Dolinina, O., Pechenkin, V., Mansurova, M., Tolek, D., Ixsanov, S.: Algorithmic approach to building a route for the removal of household waste with associated additional loads in the “Smart Clean City” project. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawinski, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 745–755. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88081-1_56

  13. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_9

    Chapter  Google Scholar 

  14. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS 1995: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE (1995)

    Google Scholar 

  15. Farah, A., Belazi, A.: A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn. 93(3), 1451–1480 (2018)

    Article  Google Scholar 

  16. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Article  Google Scholar 

  17. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  18. Ghaemi, M., Feizi-Derakhshi, M.R.: Feature selection using forest optimization algorithm. Pattern Recogn. 60, 121–129 (2016)

    Article  Google Scholar 

  19. Hernes, M., Wojtkiewicz, K., Szczerbicki, E. (eds.): ICCCI 2020. CCIS, vol. 1287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63119-2

    Book  Google Scholar 

  20. Hussein, A.H., Fouda, H.S., Abdullah, H.H., Khalaf, A.A.: A highly efficient spectrum sensing approach based on antenna arrays beamforming. IEEE Access 8, 25184–25197 (2020)

    Article  Google Scholar 

  21. Koçkaya, K., Develi, İ.: Spectrum sensing in cognitive radio networks: threshold value optimization and analysis (2020)

    Google Scholar 

  22. Li, M.W., Wang, Y.T., Geng, J., Hong, W.C.: Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dyn. 103(1), 1167–1193 (2021)

    Article  Google Scholar 

  23. Liu, Z., Blasch, E., John, V.: Statistical comparison of image fusion algorithms: recommendations. Inf. Fusion 36, 251–260 (2017)

    Article  Google Scholar 

  24. Morozkin, P., Swynghedauw, M., Trocan, M.: Neural network based eye tracking. In: Nguyen, N.T., Papadopoulos, G.A., Jedrzejowicz, P., Trawinski, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 600–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_58

  25. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3(1), 1–16 (2011)

    Article  Google Scholar 

  26. Peraza-Vázquez, H., et al.: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies. Math. Prob. Eng. 2021 (2021)

    Google Scholar 

  27. Pourbahrami, S.: Improving PSO global method for feature selection according to iterations global search and chaotic theory. arXiv preprint arXiv:1811.08701 (2018)

  28. dos Santos Coelho, L., Mariani, V.C.: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst. Appl. 34(3), 1905–1913 (2008)

    Article  Google Scholar 

  29. Sayed, G.I., Khoriba, G., Haggag, M.H.: A novel chaotic SALP swarm algorithm for global optimization and feature selection. Appl. Intell. 48(10), 3462–3481 (2018)

    Article  Google Scholar 

  30. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  31. Zhu, H., Qi, W., Ge, J., Liu, Y.: Analyzing devaney chaos of a sine-cosine compound function system. Int. J. Bifurcation Chaos 28(14), 1850176 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarra Ben Chaabane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Chaabane, S., Bouallegue, K., Belazi, A., Kharbech, S., Bouallegue, A. (2022). Chaotic Dingo Optimization Algorithm: Application in Feature Selection for Beamforming Aided Spectrum Sensing. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics