Abstract
This paper describes a multi-level adaptive network model for mental processes making use of shared mental models in the context of organizational learning in team-related performances. The paper describes the value of using shared mental models to illustrate the concept of organizational learning, and factors that influence team performances by using the analogy of a team of match officials during a game of football and show their behavior in a simulation of the shared mental model. The paper discusses potential elaborations of the different studied concepts, as well as implications of the paper in the domain of teamwork and team performance, and in terms of organizational learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19(4), 126–130 (1996)
Boyko, R.H., Boyko, A.R., Boyko, M.G.: Referee bias contributes to home advantage in English premiership football. J. Sports Sci. 25(11), 1185–1194 (2007)
Canbaloğlu, G., Treur, J.: Context-sensitive mental model aggregation in a second-order adaptive network model for organisational learning. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) COMPLEX NETWORKS 2021. SCI, vol. 1015, pp. 411–423. Springer, Cham (2022a). https://doi.org/10.1007/978-3-030-93409-5_35
Canbaloğlu, G., Treur, J.: Using boolean functions of context factors for adaptive mental model aggregation in organisational learning. In: Klimov, V.V., Kelley, D.J. (eds.) BICA 2021. SCI, vol. 1032, pp. 54–68. Springer, Cham (2022b). https://doi.org/10.1007/978-3-030-96993-6_5
Canbaloğlu, G., Treur, J., Roelofsma, P.H.M.P.: Computational modeling of organisational learning by self-modeling networks. Cognit. Syst. Res. J. 73, 51–64 (2022a)
Canbaloğlu, G., Treur, J., Roelofsma, P.: An adaptive self-modeling network model for multilevel organizational learning. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds.) ICICT 2022. LNNS, vol. 448, pp. 179–191 (2022b). Springer, Singapore. https://doi.org/10.1007/978-981-19-1610-6_16
Canbaloğlu, G., Treur, J., Wiewiora, A.: Computational modeling of multilevel organisational learning: from conceptual to computational mechanisms. In: Proceedings of Computational Intelligence: Automate Your World. The Second International Conference on Information Technology, InCITe 2022. Lecture Notes in Electrical Engineering, Springer (2022c)
Craik, K.J.W.: The nature of explanation. CUP Archive, vol. 445 (1952)
Crossan, M.M., Lane, H.W., White, R.E.: An organizational learning framework: From intuition to institution. Acad. Manag. Rev. 24, 522–537 (1999)
Gomez-Carmona, C., Pino-Ortega, J.: Kinematic and physiological analysis of the performance of the referee football and its relationship with decision making. J. Hum. Sport Exerc. 11(4), 397–414 (2016)
Heil, J.: Philosophy of Mind. Routledge (1998)
Katz-Navon, T.Y., Erez, M.: When collective-and self-efficacy affect team performance: the role of task interdependence. Small Group Res. 36(4), 437–465 (2005)
Kim, D.H.: The link between individual and organizational learning. Sloan Manag. Rev. 33(1), 37–50 (1993)
Mathieu, J.E., et al.: The influence of shared mental models on team process and performance. J. Appl. Psychol. 85(2), 273 (2000)
Salas, E., Cooke, N.J., Rosen, M.A.: On teams, teamwork, and team performance: discoveries and developments. Hum. Factors 50(3), 540–547 (2008)
Treur, J.: A modeling environment for reified temporal-causal networks: modeling plasticity and metaplasticity in cognitive agent models. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds.) PRIMA 2019. LNCS, vol. 11873, pp. 487–495. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33792-6_33
Treur, J.: Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31445-3
Treur, J.: On the dynamics and adaptivity of mental processes: relating adaptive dynamical systems and self-modeling network models by mathematical analysis. Cogn. Syst. Res. 70, 93–100 (2021)
Van Ments, L., Treur, J., Klein, J., Roelofsma, P.H.M.P.: A computational network model for shared mental models in hospital operation rooms. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS, vol. 12960, pp. 67–78. Springer, Cham (2021a). https://doi.org/10.1007/978-3-030-86993-9_7
Van Ments, L., Treur, J., Klein, J., Roelofsma, P.H.M.P.: A second-order adaptive network model for shared mental models in hospital teamwork. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 126–140. Springer, Cham (2021b). https://doi.org/10.1007/978-3-030-88081-1_10
Treur, J., Van Ments, L. (eds.): Mental Models and their Dynamics, Adaptation, and Control: a Self-modeling Network Modeling Approach. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85821-6
Van Ments, L., Treur, J.: Reflections on dynamics, adaptation, and control: a cognitive architecture for mental models. Cogn. Syst. Res. 70, 1–9 (2021)
Wiewiora, A., Smidt, M., Chang, A.: The ‘how’ of multilevel learning dynamics: a systematic literature review exploring how mechanisms bridge learning between individuals, teams/projects and the organization. Eur. Manag. Rev. 16, 93–115 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kuilboer, S., Sieraad, W., Canbaloğlu, G., van Ments, L., Treur, J. (2022). A Second-Order Adaptive Network Model for Organizational Learning and Usage of Mental Models for a Team of Match Officials. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_55
Download citation
DOI: https://doi.org/10.1007/978-3-031-16014-1_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16013-4
Online ISBN: 978-3-031-16014-1
eBook Packages: Computer ScienceComputer Science (R0)