Skip to main content

Robust Rule Based Neural Network Using Arithmetic Fuzzy Inference System

  • Conference paper
  • First Online:
  • 741 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 542))

Abstract

Deep Neural Networks (DNNs) are currently one of the most important research areas of Artificial Intelligence (AI). Various type of DNNs have been proposed to solve practical problems in various fields. However the performance of all these types of DNNs degrades in the presence of feature noise. Expert systems are also a key area of AI that are based on rules. In this work we wish to combine the advantages of these two areas. Here, we present Rule-Based Neural Networks (RBNNs) where each neuron is a Fuzzy Inference System (FIS). RBNN can be trained to learn various regression and classification tasks. It has relatively a few trainable parameters. It is robust to (input) feature noise and it provides a good prediction accuracy even in the presence of large feature noise. The learning capacity of the RBNN can be enhanced by increasing the number of neurons, number of rules and number of hidden layers. The effectiveness of RBNNs is demonstrated by learning real world regression and classification tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A.E., Arshad, H.: State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11), e00938 (2018)

    Google Scholar 

  2. Alam, M., Samad, M.D., Vidyaratne, L., Glandon, A., Iftekharuddin, K.M.: Survey on deep neural networks in speech and vision systems. Neurocomputing 417, 302–321 (2020)

    Google Scholar 

  3. Altaher, A.: An improved android malware detection scheme based on an evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-based features. Neural Comput. Appl. 28(12), 4147–4157 (2017)

    Article  Google Scholar 

  4. Ayeni, B.K., Sahalu, J.B., Adeyanju, K.R.: Detecting cross-site scripting in web applications using fuzzy inference system. J. Comput. Netw. Commun. 2018 (2018)

    Google Scholar 

  5. Berenji, H.R., Khedkar, P., et al.: Learning and tuning fuzzy logic controllers through reinforcements. IEEE Trans. Neural Netw. 3(5), 724–740 (1992)

    Google Scholar 

  6. Birla, Nehal.: Vehicle dataset from Cardekho. Accessed 21 Dec 2020

    Google Scholar 

  7. Czogala, E., Leski, J.: Fuzzy and Neuro-fuzzy Intelligent Systems, vol. 47. Springer, Cham (2012). https://doi.org/10.1007/978-3-7908-1853-6

  8. Das, R., Sen, S., Maulik, U.: A survey on fuzzy deep neural networks. ACM Comput. Surv. (CSUR) 53(3), 1–25 (2020)

    Article  Google Scholar 

  9. Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2016)

    Google Scholar 

  10. Dombi, J.: The generalized dombi operator family and the multiplicative utility function. In: Balas, V.E., Fodor, J., Várkonyi-Kóczy, A.R. (eds.) Soft Computing Based Modeling in Intelligent Systems. SCI, vol. 196, pp. 115–131. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00448-3_6

  11. Dombi, J., Hussain, A.: A new approach to fuzzy control using the distending function. J. Process Control 86, 16–29 (2020)

    Article  Google Scholar 

  12. Dombi, J., Jónás, T.: Kappa regression: an alternative to logistic regression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 28(02), 237–267 (2020)

    Article  MathSciNet  Google Scholar 

  13. Figueiredo, M., Gomide, F.: Design of fuzzy systems using neurofuzzy networks. IEEE Trans. Neural Netw. 10(4), 815–827 (1999)

    Article  Google Scholar 

  14. Fisher, R.A.: Iris data set. Accessed 21 Oct 2020

    Google Scholar 

  15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  16. Xiaowei, G.: Multilayer ensemble evolving fuzzy inference system. IEEE Trans. Fuzzy Syst. 29(8), 2425–2431 (2021)

    Article  Google Scholar 

  17. Gui, J., Sun, Z., Wen, Y., Tao, D., Ye, J.: A review on generative adversarial networks: algorithms, theory, and applications. arXiv preprint arXiv:2001.06937 (2020)

  18. Jang, R.: Neuro-fuzzy modelling: architectures. Analysis and applications. Ph.D. thesis, University of California, Berkley (1992)

    Google Scholar 

  19. Juang, C.-F., Lin, C.-T.: An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 6(1), 12–32 (1998)

    Article  Google Scholar 

  20. Kietzmann, J., Lee, L.W., McCarthy, I.P., Kietzmann, T.C.: DeepFakes: trick or treat? Bus. Horiz. 63(2), 135–146 (2020)

    Google Scholar 

  21. Kisi, O., Azad, A., Kashi, H., Saeedian, A., Hashemi, S.A.A., Ghorbani, S.: Modeling groundwater quality parameters using hybrid neuro-fuzzy methods. Water Resour. Manag. 33(2), 847–861 (2019)

    Article  Google Scholar 

  22. Li, M., Feng, L., Zhang, H., Chen, J.: Predicting future locations of moving objects with deep fuzzy-LSTM networks. Transportmetrica A: Transp. Sci. 16(1), 119–136 (2020)

    Article  Google Scholar 

  23. Lin, C.-T., Lee, C.S.G.: et al.: Neural-network-based fuzzy logic control and decision system. IEEE Trans. comput. 40(12), 1320–1336 (1991)

    Google Scholar 

  24. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Google Scholar 

  25. Mane, D.T., Kulkarni, U.V.: A survey on supervised convolutional neural network and its major applications. In: Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications, pp. 1058–1071. IGI Global (2020)

    Google Scholar 

  26. Nauck, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst. 101(2), 261–271 (1999)

    Article  MathSciNet  Google Scholar 

  27. Nettleton, D.F., Orriols-Puig, A., Fornells, A.: A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 33(4), 275–306 (2010)

    Google Scholar 

  28. Ilker Ali Ozkan: A novel basketball result prediction model using a concurrent neuro-fuzzy system. Appl. Artif. Intell. 34(13), 1038–1054 (2020)

    Article  Google Scholar 

  29. Parmar, R.: Wine quality data set. Accessed 02 Dec 2020

    Google Scholar 

  30. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

    Google Scholar 

  31. Teklehaimanot, Y.K., Negash, D.S., Workiye, E.A.: Design of hybrid neuro-fuzzy controller for magnetic levitation train systems. In: Mekuria, F., Nigussie, E., Tegegne, T. (eds.) ICT4DA 2019. CCIS, vol. 1026, pp. 119–133. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26630-1_10

    Chapter  Google Scholar 

  32. Toseef, M., Khan, M.J.: An intelligent mobile application for diagnosis of crop diseases in Pakistan using fuzzy inference system. Comput. Electron. Agric. 153, 1–11 (2018)

    Article  Google Scholar 

  33. Vališ, D., Žák, L., Vintr, Z.: Application of fuzzy inference system for analysis of oil field data to optimize combustion engine maintenance. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 233(14), 3736–3745 (2019)

    Article  Google Scholar 

  34. Zheng, Y.-J., Chen, S.-Y., Xue, Y., Xue, J.-Y.: A pythagorean-type fuzzy deep denoising autoencoder for industrial accident early warning. IEEE Trans. Fuzzy Syst. 25(6), 1561–1575 (2017)

    Google Scholar 

Download references

Acknowledgment

The study was supported by the Ministry of Innovation and Technology NRDI Office within the framework of the Artificial Intelligence National Laboratory Program. The research was also funded from the National Research, Development and Innovation Fund of Ministry of Innovation and Technology of Hungary under the TKP2021-NVA (Project no. TKP2021-NVA-09) funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abrar Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dombi, J., Hussain, A. (2023). Robust Rule Based Neural Network Using Arithmetic Fuzzy Inference System. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-031-16072-1_2

Download citation

Publish with us

Policies and ethics