Skip to main content

Deontic Sentence Classification Using Tree Kernel Classifiers

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 542))

Included in the following conference series:

  • 980 Accesses

Abstract

The aim of this work is to employ Tree Kernel algorithms to classify natural language in the legal domain (i.e. deontic sentences and rules). More precisely, an innovative way of extracting labelled legal data is proposed, which combines the information provided by two famous LegalXML formats: Akoma Ntoso and LegalRuleML. We then applied this method on the European General Data Protection Regulation (GDPR) to train a Tree Kernel classifier on deontic and non-deontic sentences which were reconstructed using Akoma Ntoso, and labelled using the LegalRuleML representation of the GDPR. To prove the non-triviality of the task we reported the results of a stratified baseline classifier on two classification scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Another important benefit to use AKN is to use metadata for collocating the deontic operators in the correct temporal sequence. If we have a suspension or a sunset rule or an exception we can use these important information to understand better the relationship between different parts of the discourse so as to recompose the deontic operator correctly.

  2. 2.

    In Akoma Ntoso, atomic normative provisions can be contained in different structures (e.g. in paragraphs or list points), and may sometimes be composed of more than one sentence. We extracted these provisions from the body of the GDPR (the sentences of the preamble and conclusions are thus excluded).

  3. 3.

    The DAPRECO knowledge base can be freely downloaded from its repository: https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml.

  4. 4.

    The Akoma Ntoso representation of the GDPR is currently accessible from https://github.com/guerret/lu.uni.dapreco.parser/blob/master/resources/akn-act-gdpr-full.xml, where it can be freely downloaded.

  5. 5.

    https://eur-lex.europa.eu/eli/reg/2016/679/oj#d1e1807-1-1.

  6. 6.

    https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/legalruleml-core-spec-v1.0.html.

  7. 7.

    https://docs.oasis-open.org/legaldocml/akn-nc/v1.0/csprd01/akn-nc-v1.0-csprd01.html.

  8. 8.

    These values are used within KeLP to specify the degree of sensitivity of the Tree Kernel algorithms in terms of the vertical and horizontal depth of sentences.

References

  1. Ashley, K.D.: Artificial Intelligence and Legal Analytics: New Tools for Law Practice in the Digital Age. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  2. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: Oasis legalruleml. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law, pp. 3–12 (2013)

    Google Scholar 

  3. Chalkidis, I., Androutsopoulos, I., Michos, A.: Obligation and prohibition extraction using hierarchical RNNs. arXiv preprint arXiv:1805.03871 (2018)

  4. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in Neural Information Processing Systems, pp. 625–632 (2002)

    Google Scholar 

  5. Croce, D., Moschitti, A., Basili, R.: Semantic convolution kernels over dependency trees: smoothed partial tree kernel. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 2013–2016 (2011)

    Google Scholar 

  6. Croce, D., Moschitti, A., Basili, R.: Structured lexical similarity via convolution kernels on dependency trees. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1034–1046 (2011)

    Google Scholar 

  7. Filice, S., Castellucci, G., Croce, D., Basili, R.: Kelp: a kernel-based learning platform for natural language processing. In: Proceedings of ACL-IJCNLP 2015 System Demonstrations, pp. 19–24 (2015)

    Google Scholar 

  8. Gao, X., Singh, M.P.: Extracting normative relationships from business contracts. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, pp. 101–108 (2014)

    Google Scholar 

  9. Gomez-Perez, J.M., Denaux, R., Garcia-Silva, A.: Hybrid Natural Language Processing: An Introduction, pp. 3–6. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44830-1_1

  10. Kiyavitskaya, N., et al.: Automating the extraction of rights and obligations for regulatory compliance. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_13

    Chapter  Google Scholar 

  11. Liga, D.: Argumentative evidences classification and argument scheme detection using tree kernels. In: Proceedings of the 6th Workshop ArgMining, pp. 92–97 (2019)

    Google Scholar 

  12. Lippi, M., et al.: Claudette: an automated detector of potentially unfair clauses in online terms of service. Artif. Intell. Law, pp. 1–23 (2018)

    Google Scholar 

  13. Makinson, D., Van Der Torre, L.: Input/output logics. J. Philos. Logic 29(4), 383–408 (2000)

    Article  MathSciNet  Google Scholar 

  14. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: European Conference on Machine Learning, pp. 318–329 (2006)

    Google Scholar 

  15. Moschitti, A.: Making tree kernels practical for natural language learning. In: 11th Conference of the European Chapter of ACL (2006)

    Google Scholar 

  16. O’Neill, J., Buitelaar, P., Robin, C., O’Brien, L.: Classifying sentential modality in legal language: a use case in financial regulations, acts and directives. In: Proceedings of the 16th Edition of AI and Law, pp. 159–168 (2017)

    Google Scholar 

  17. Palmirani, M., Vitali, F.: Akoma-Ntoso for legal documents. In: Sartor, G., Palmirani, M., Francesconi, E., Biasiotti, M. (eds.) Legislative XML for the Semantic Web. Law, Governance and Technology Series, vol. 4, pp. 75–100. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-1887-6_6

  18. Robaldo, L., Bartolini, C., Lenzini, G.: The DAPRECO knowledge base: representing the GDPR in LegalRuleML. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 5688–5697 (2020)

    Google Scholar 

  19. Rodríguez-Doncel, V., Palmirani, M., Araszkiewicz, M., Casanovas, P., Pagallo, U., Sartor, G.: Introduction: a hybrid regulatory framework and technical architecture for a human-centered and explainable AI. In: Rodríguez-Doncel, V., Palmirani, M., Araszkiewicz, M., Casanovas, P., Pagallo, U., Sartor, G. (eds.) AICOL/XAILA 2018/2020. LNCS (LNAI), vol. 13048, pp. 1–11. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89811-3_1

    Chapter  Google Scholar 

  20. Rubino, R., Rotolo, A., Sartor, G.: An owl ontology of norms and normative judgements. In: Biagioli, C., Francesconi, E., Sartor, G. (szerk.) Proceedings of the V Legislative XML Workshop, pp. 173–187. Citeseer (2007)

    Google Scholar 

  21. Vishwanathan, S.V.N., Smola, A.J., et al.: Fast kernels for string and tree matching. Kernel Methods Comput. Biol. 15, 113–130 (2004)

    Google Scholar 

  22. Waltl, B., Muhr, J., Glaser, I., Bonczek, G., Scepankova, E., Matthes, F.: Classifying legal norms with active machine learning. In: URIX, pp. 11–20 (2017)

    Google Scholar 

  23. Wyner, A., Peters, W.: On rule extraction from regulations. In: Legal Knowledge and Information Systems, pp. 113–122. IOS Press (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Liga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liga, D., Palmirani, M. (2023). Deontic Sentence Classification Using Tree Kernel Classifiers. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-031-16072-1_4

Download citation

Publish with us

Policies and ethics