Skip to main content

Evaluation of Deep Learning Techniques in Human Activity Recognition

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 542))

Included in the following conference series:

  • 716 Accesses

Abstract

The increasingly acceptance of Internet of Things (IoT) devices adversely contribute to the accumulation of massive amounts of data which challenges for the adoption of techniques capable to handle it. This paper first presents overall points of deep learning, and IoT principles. After that, this paper uses the human recognition activity scenario to evaluate two DL models: the Convolutional Neural Network (CNN), and the Recurrent Neural Network. At last, a benchmark with the state-of-the-art is presented. The main findings evidenced the suitability of the proposed model; the CNN performed a mean accuracy rate of 93%, and therefore it is likely to be embedded in an IoT device. There is room for improvements, namely, the ability to recognize additional human activities, and to include more testing scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones.

References

  1. Towards a definition of the internet of things (IoT) (2015)

    Google Scholar 

  2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35395-6_30

    Chapter  Google Scholar 

  3. Atitallah, S.B., Driss, M., Boulila, W., Ghézala, H.B.: Leveraging deep learning and IoT big data analytics to support the smart cities development: review and future directions. Comput. Sci. Rev. 38, 100303 (2020)

    Google Scholar 

  4. Boob, D., Dey, S.S., Lan, G.: Complexity of training ReLU neural network. Discrete Optim. 100620 (2020)

    Google Scholar 

  5. Chen, Q., et al.: A survey on an emerging area: deep learning for smart city data. IEEE Trans. Emerg. Top. Comput. Intell. 3(5), 392–410 (2019)

    Article  Google Scholar 

  6. Dohnalek, P., Gajdoš, P., Peterek, T.: Human activity recognition: classifier performance evaluation on multiple datasets. J. Vibroeng. 16(3), 1523–1534 (2014)

    Google Scholar 

  7. Eceiza, M., Flores, J.L., Iturbe, M.: Fuzzing the internet of things: a review on the techniques and challenges for efficient vulnerability discovery in embedded systems. IEEE Internet Things J. 8(13), 10390–10411 (2021)

    Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Inácio, P.R.M., Duarte, A., Fazendeiro, P., Pombo, N. (eds.): 5th EAI International Conference on IoT Technologies for HealthCare. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30335-8

  10. Li, C., Qu, Z., Wang, S., Liu, L.: A method of cross-layer fusion multi-object detection and recognition based on improved faster R-CNN model in complex traffic environment. Pattern Recogn. Lett. 145, 127–134 (2021)

    Google Scholar 

  11. Kolisnik, B., Hogan, I., Zulkernine, F.: Condition-CNN: a hierarchical multi-label fashion image classification model. Expert Syst. Appl. 182, 115195 (2021)

    Article  Google Scholar 

  12. Lukowicz, P., et al.: Recognizing workshop activity using body worn microphones and accelerometers. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 18–32. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_2

    Chapter  Google Scholar 

  13. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018)

    Article  Google Scholar 

  14. Nguyen, C.T., Khuong, V.T.M., Nguyen, H.T., Nakagawa, M.: CNN based spatial classification features for clustering offline handwritten mathematical expressions. Pattern Recogn. Lett. 131, 113–120 (2020)

    Google Scholar 

  15. Olguín, D., Pentland, S.: Human activity recognition: accuracy across common locations for wearable sensors, January 2006

    Google Scholar 

  16. Pombo, N., Bousson, K., Araújo, P., Viana, J.: Medical decision-making inspired from aerospace multisensor data fusion concepts. Inform. Health Soc. Care 40(3), 185–197 (2014)

    Article  Google Scholar 

  17. Pombo, N., Garcia, N., Bousson, K.: Machine learning approaches to automated medical decision support systems. In: Pandian, V. (ed.) Handbook of Research on Artificial Intelligence Techniques and Algorithms, pp. 183–203. IGI Global, Hershey (2015)

    Chapter  Google Scholar 

  18. Shao, H.: Delay-dependent stability for recurrent neural networks with time-varying delays. IEEE Trans. Neural Netw. 19(9), 1647–1651 (2008)

    Article  Google Scholar 

  19. Wang, C., Dong, S., Zhao, X., Papanastasiou, G., Zhang, H., Yang, G.: SaliencyGAN: deep learning semisupervised salient object detection in the fog of IoT. IEEE Trans. Industr. Inf. 16(4), 2667–2676 (2020)

    Article  Google Scholar 

  20. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019). Deep Learning for Pattern Recognition

    Google Scholar 

  21. Wang, W., Yang, Y.: Development of convolutional neural network and its application in image classification: a survey. Opt. Eng. 58(04), 1 (2019)

    Google Scholar 

  22. Wang, Z., Zeng, Y., Liu, Y., Li, D.: Deep belief network integrating improved kernel-based extreme learning machine for network intrusion detection. IEEE Access 9, 16062–16091 (2021)

    Article  Google Scholar 

  23. Hao, W., Bie, R., Guo, J., Meng, X., Zhang, C.: CNN refinement based object recognition through optimized segmentation. Optik 150, 76–82 (2017)

    Article  Google Scholar 

  24. Xu, L., Pombo, N.: Human behavior prediction though noninvasive and privacy-preserving internet of things (IoT) assisted monitoring. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 773–777, April 2019

    Google Scholar 

  25. Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: a survey. IEEE Commun. Surv. Tutor. 21(3), 2224–2287 (2019)

    Article  Google Scholar 

  26. Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inf. Fusion 42, 146–157 (2018)

    Article  Google Scholar 

  27. Zhang, Y., Lin, H., Yang, Z., Wang, J., Sun, Y., Bo, X., Zhao, Z.: Neural network-based approaches for biomedical relation classification: a review. J. Biomed. Inform. 99, 103294 (2019)

    Article  Google Scholar 

  28. Zhang, Y., Qiao, S., Zeng, Y., Gao, D., Han, N., Zhou, J.: CAE-CNN: predicting transcription factor binding site with convolutional autoencoder and convolutional neural network. Expert Syst. Appl. 183, 115404 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by Centro-01-0247-FEDER-072632-“NomaVoy - Nomad Voyager”, co-financed by the Portugal 2020 Program (PT 2020), in the framework of the Regional Operational Program of the Center (CENTRO 2020) and the European Union through the Fundo Europeu de Desenvolvimento Regional (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Pombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendes, T., Pombo, N. (2023). Evaluation of Deep Learning Techniques in Human Activity Recognition. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-031-16072-1_8

Download citation

Publish with us

Policies and ethics