Skip to main content

Firearm Detection Using Deep Learning

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 544))

Included in the following conference series:

  • 788 Accesses

Abstract

Surveillance Cameras (SCs) are great support in crime investigation and proximity alarms which play a critical role in public safety and peace. The major drawback is their limited use in producing evidences in judicial court but they were not used in providing early firearms detection to stop attacks in crime scenes. Traditional firearm detection techniques use X-Rays for detecting weapons in limited coverage area that fail in detecting non-metallic weapons. The main motivation of this research is developing a deep learning object detection model to early detect firearms in crime scenes and alert the corresponding authorities. Designing an efficient and accurate object detection model that localize and classify the firearm classes with overcoming variations in shape, size, appearance and occlusions is a real challenge. We collected a dataset of different firearm classes from Kaggle and Google Open Images and manually annotated about 2300 samples. The dataset consists of variety of firearms classes handgun, revolver, rifle along with knife and person classes. YOLOv5 (You Only Look Once) is a unified object detector which detects objects without losing their precision and accuracy. All the YOLOv5 models are built from scratch and generate final models that achieved 89.4%, 70.1%, 80.5% of precision, recall and mAP@0.5 respectively and achieved the highest 94.1% precision per individual class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Do x-rays and gamma rays cause cancer?

    Google Scholar 

  2. Gun violence archive

    Google Scholar 

  3. Imagenet

    Google Scholar 

  4. Imfdb- database

    Google Scholar 

  5. Imguag

    Google Scholar 

  6. Tsa

    Google Scholar 

  7. Advantages and disadvantages of machine learning language, Mar 2021

    Google Scholar 

  8. Ahmed, K.R.: Parallel dilated CNN for detecting and classifying defects in surface steel strips in real-time. In: Arai, K. (ed.) IntelliSys 2021. LNNS, vol. 294, pp. 168–183. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82193-7_11

    Chapter  Google Scholar 

  9. Ahmed, K.R.: Smart pothole detection using deep learning based on dilated convolution. Sensors 21(24), 8406 (2021)

    Google Scholar 

  10. Jawad Siddique, M., Ahmed, K.R.: Deep learning technologies to mitigate deer-vehicle collisions. In: Ahmed, K.R., Hassanien, A.E. (eds.) Deep Learning and Big Data for Intelligent Transportation. SCI, vol. 945, pp. 103–117. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65661-4_5

    Chapter  Google Scholar 

  11. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE (2012)

    Google Scholar 

  12. Alaqil, R.M., Alsuhaibani, J.A., Alhumaidi, B.A., Alnasser, R.A., Alotaibi, R.D., Benhidour, H.: Automatic gun detection from images using faster r-cnn. In: 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), pp. 149–154. IEEE (2020)

    Google Scholar 

  13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  14. Dalal, N., Triggs. B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  15. Darker, I., Gale, A., Ward, L., Blechko, A.: Can cctv reliably detect gun crime? In: 2007 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 264–271. IEEE (2007)

    Google Scholar 

  16. Darker, I.T., et. al.: Automation of the cctv-mediated detection of individuals illegally carrying firearms: combining psychological and technological approaches. In: Visual Information Processing XVIII, vol. 7341, p. 73410P. International Society for Optics and Photonics (2009)

    Google Scholar 

  17. de Azevedo Kanehisa, R.F., de Almeida Neto, A.: Firearm detection using convolutional neural networks. In: ICAART, vol. (2), pp. 707–714 (2019)

    Google Scholar 

  18. Deng,J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  19. Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks (2016)

    Google Scholar 

  20. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning (2017)

    Google Scholar 

  21. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. CoRR, abs/1702.03118 (2017)

    Google Scholar 

  22. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol, 2, pp. 524–531. IEEE (2005)

    Google Scholar 

  23. Fernandez-Carrobles, M.M., Deniz, O., Maroto, F.: Gun and knife detection based on faster R-CNN for video surveillance. In: Morales, A., Fierrez, J., Sánchez, J.S., Ribeiro, B. (eds.) IbPRIA 2019. LNCS, vol. 11868, pp. 441–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31321-0_38

    Chapter  Google Scholar 

  24. Flitton, G., Breckon, T.P., Megherbi, N.: A comparison of 3d interest point descriptors with application to airport baggage object detection in complex ct imagery. Pattern Recogn. 46(9), 2420–2436 (2013)

    Article  Google Scholar 

  25. Jocher, G.: Hyper parameter evolution (2020)

    Google Scholar 

  26. Gesick, R., Saritac, C., Hung, C.-C.: Automatic image analysis process for the detection of concealed weapons. In: Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence Challenges and Strategies, pp. 1–4 (2009)

    Google Scholar 

  27. Glowacz, A., Kmieć, M., Dziech, A.: Visual detection of knives in security applications using active appearance models. Multimedi Tools Appli. 74(12), 4253–4267 (2015)

    Article  Google Scholar 

  28. Ben Halima, N., Hosam, O.: Bag of words based surveillance system using support vector machines. Int. J. Sec. Appli. 10(4), 331–346 (2016)

    Google Scholar 

  29. Hara, K., Saito, D., Shouno, H.: Analysis of function of rectified linear unit used in deep learning. In: 2015 international joint conference on neural networks (IJCNN), pp. 1–8. IEEE (2015)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  31. Hosam, O., Alraddadi, A.: K-means clustering and support vector machines approach for detecting fire weapons in cluttered scenes. Life Sci. J. 11(9) (2014)

    Google Scholar 

  32. Ineneji, C., Kusaf, M.: Hybrid weapon detection algorithm, using material test and fuzzy logic system. Comput. Elect. Eng. 78, 437–448 (2019)

    Article  Google Scholar 

  33. Jiao, L., et al.: A survey of deep learning-based object detection. IEEE Access 7, 128837–128868 (2019)

    Article  Google Scholar 

  34. Kambhatla, A.: Automatic Firearm Detection by Deep Learning. M.Sc. thesis, Southern Illinois University at Carbondale (2020)

    Google Scholar 

  35. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  36. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning, May 2015

    Google Scholar 

  37. Li, Y., Tian, G.Y., Bowring, N., Rezgui, N.: A microwave measurement system for metallic object detection using swept-frequency radar. In: Millimetre Wave and Terahertz Sensors and Technology, vol. 7117, p. 71170K. International Society for Optics and Photonics (2008)

    Google Scholar 

  38. Liu, W., et al.: SSD: single shot multiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  39. Taghi, M., Shorten, C.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  40. Nercessian, S., Panetta, K., Agaian, S.: Automatic detection of potential threat objects in x-ray luggage scan images. In: 2008 IEEE Conference on Technologies for Homeland Security, pp. 504–509. IEEE (2008)

    Google Scholar 

  41. Olmos, R., Tabik, S., Herrera, F.: Automatic handgun detection alarm in videos using deep learning. Neurocomputing 275, 66–72 (2018)

    Article  Google Scholar 

  42. Park, H., Yoo, Y., Seo,G., Han, D., Yun, S., Kwak, N.: C3: Concentrated-comprehensive convolution and its application to semantic segmentation (2019)

    Google Scholar 

  43. Zhang, R., Qiu, Z.: Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring. PLoS ONE 15(6), 881–892 (2020)

    Google Scholar 

  44. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE-Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  45. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 658–666 (2019)

    Google Scholar 

  46. Hahnloser, R.H.R., Sarpeshka, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405, 947–951 (2000)

    Article  Google Scholar 

  47. Sahil, S., et al.: A survey of modern deep learning based object detection models (2021)

    Google Scholar 

  48. Sevak, J.S., Kapadia, A.D., Chavda, J.B., Shah, A., Rahevar, M.: Survey on semantic image segmentation techniques. In: IEEE International Conference on Intelligent Sustainable Systems (ICISS), pp. 306–313 (2017)

    Google Scholar 

  49. Sheen, D.M., McMakin, D.L., Hall, T.E.: Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001)

    Article  Google Scholar 

  50. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. Big Data 6, 60 (2019)

    Google Scholar 

  51. Tiwari, R.K., Verma, G.K.: A computer vision based framework for visual gun detection using harris interest point detector. Proc. Comput. Sci. 54, 703–712 (2015)

    Article  Google Scholar 

  52. Ultralytics. Ultralytics/yolov5: Yolov5 in pytorch

    Google Scholar 

  53. Upadhyay, E.M., Rana, N.K.: Exposure fusion for concealed weapon detection. In: 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1–6. IEEE (2014)

    Google Scholar 

  54. Verma, G.K., Dhillon, A.: A handheld gun detection using faster r-cnn deep learning. In: Proceedings of the 7th International Conference on Computer and Communication Technology, pp. 84–88 (2017)

    Google Scholar 

  55. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

    Google Scholar 

  56. Vlahos, J.: Surveillance society: new high-tech cameras are watching you. Pop. Mech. 139(1), 64–69 (2008)

    Google Scholar 

  57. Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H.: Cspnet: a new backbone that can enhance learning capability of cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)

    Google Scholar 

  58. Wu, F., Duan, J., Chen, S., Ye., Y, Ai, P., Yang, Z.: Multi-target recognition of bananas and automatic positioning for the inflorescence axis cutting point. Front. Plant Sci. 2, 12 (2021)

    Google Scholar 

  59. Xue, Z., Blum, R.S.: Concealed weapon detection using color image fusion. In: Proceedings of the 6th International Conference on Information Fusion, vol. 1, pp. 622–627. IEEE (2003)

    Google Scholar 

  60. Zelong, X., Xuan, L., Jiangjiang, Y., Li, W., Luyao, R.: Automatic detection of concealed pistols using passive millimeter wave imaging. In: 2015 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–4 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhila Kambhatla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kambhatla, A., Ahmed, K.R. (2023). Firearm Detection Using Deep Learning. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 544. Springer, Cham. https://doi.org/10.1007/978-3-031-16075-2_13

Download citation

Publish with us

Policies and ethics