Skip to main content

Hard Samples Make Difference: An Improved Training Procedure for Video Action Recognition Tasks

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 544))

Included in the following conference series:

  • 726 Accesses

Abstract

In recent years, the Computer Vision community is witnessing slow shift in Computer Vision tasks from CNN to Attention-based architectures like Transformers which have attained top accuracy on the major recognition tasks. Historically, most of the research works concentrated on image level recognition task as basic ones. However there is still huge room for improvements when moving towards video level tasks. Generally, video models are built on top of image level architectures with attention mechanism or 3D-CNN layers that are globally interconnected across spatial and temporal dimensions. While recent studies of Transformers advocated more on architectural changes, CNN based approaches focus more on best practice of training neural networks which led to a better speed-accuracy trade-off. These best practices are yet to be developed for video recognition tasks. The major contribution of this paper is a novel approach for video-model training. This approach is based on unsupervised hard samples mining to focus training on them rather than on whole dataset. By incorporating this approach into training pipeline of Video Swin Transformer we achieved state-of-the-art accuracy on Kinetics-400 dataset (84.4% and 96.5% for Top-1 and Top-5 accuracy, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  2. Papers with Code http://paperswithcode.com/task/image-classification Accessed 11 Feb 2022

  3. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press http://www.deeplearningbook.org (2016)

  5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing systems, pp.1097–1105 (2012)

    Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556 http://arxiv.org/abs/1409.1556 (2014)

  8. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  11. Lin, T., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

    Google Scholar 

  12. Nguyen, X., Hu, Y., Ahmad Amin, M., et al.: Detecting video inter-frame forgeries based on convolutional neural network model. International Journal of Image, Graphics and Signal Processing (IJIGSP) 12(3), 1–12 (2020). https://doi.org/10.5815/ijigsp.2020.03.01

  13. Aung, M., Khaing, P., San, M.: Study for license plate detection. International Journal of Image, Graphics and Signal Processing (IJIGSP) 11(12), 39–46 (2019). https://doi.org/10.5815/ijigsp.2019.12.05

  14. AL-Alimi, D, Shao, Y., Alalimi, A., Abdu, A.: Mask R-CNN for geospatial object detection. Int. J. Inf. Technol. Computer Sci.(IJITCS) 12(5), 63–72 (2020). https://doi.org/10.5815/ijitcs.2020.05.05

  15. Arnab, A., Dehghani, M., Heigold, G., et al.: Vivit: A video vision transformer. CoRR, vol. abs/2103.15691 (2021). http://arxiv.org/abs/2103.15691

  16. Bao, H., Dong, L., Wei, F., et al.: Unilmv2: Pseudo-masked language models for unified language model pre-training. International Conference on Machine Learning, pp. 642–652 (2020)

    Google Scholar 

  17. Bertasius, G., Wang, H., Torresani, L.: Is Space-Time Attention All You Need for Video Understanding? CoRR, vol. abs/2102.05095 (2021). http://arxiv.org/abs/2102.05095

  18. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (2021)

    Google Scholar 

  19. Touvron, H., Cord, M., Douze, M., et al.: Training Data-Efficient Image Transformers & Distillation Through Attention. CoRR, vol. abs/2012.12877 (2020). http://arxiv.org/abs/2012.12877

  20. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. CoRR, vol. abs/2103.14030 (2021). http://arxiv.org/abs/2103.14030

  21. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  22. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  23. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  24. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  25. Liu, Z., Ning, J., Cao, Y., Wei, Y., et al: Video Swin Transformer. CoRR, vol. abs/2106.13230 (2021). http://arxiv.org/abs/2106.13230

  26. Wightman, R., Touvron, H., Jégou, H.: ResNet Strikes Back: An Improved Training Procedure in Timm. CoRR, vol. abs/2110.00476 (2021). http://arxiv.org/abs/2110.00476

  27. Zhang, X., Wang, Q., Zhang, J., Zhong, Z.: Adversarial AutoAugment. CoRR, vol. abs/1912.11188 (2019). http://arxiv.org/abs/1912.11188

  28. Robinson, J., Chuang, C., Sra, S., Jegelka, S.: Contrastive Learning with Hard Negative Samples. CoRR, vol. abs/2010.04592 (2020). http://arxiv.org/abs/2010.04592

  29. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal Loss for Dense Object Detection. CoRR, vol. abs/1708.02002 (2017). http://arxiv.org/abs/1708.02002

  30. Carreira, J., Zisserman, A.: Quo Vadis, Action Recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  31. Wu, W., He, D., Lin, T., et al.: MVFNet: Multi-View Fusion Network for Efficient Video Recognition. CoRR, vol. abs/2012.06977 (2020). http://arxiv.org/abs/2012.06977

  32. Tran, D., Wang, H., Torresani, L., et al.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  33. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  34. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: Gcnet: Non-local networks meet squeeze excitation networks and beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (2019)

    Google Scholar 

  35. Yin, M., Yao, Z., Cao, Y., et al.: Disentangled non-local neural networks. In: Proceedings of the European Conference on Computer Vision (2020)

    Google Scholar 

  36. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video Transformer Network. CoRR, vol. abs/2102.00719 (2021). http://arxiv.org/abs/2102.00719

  37. Fan, H., Xiong, B., Mangalam, K., et al.: Multiscale Vision Transformers. CoRR, vol. abs/2104.11227 (2021). http://arxiv.org/abs/2104.11227

  38. Li, X., Zhang, Y., Liu, C., et al.: Vidtr: Video Transformer Without Convolutions. CoRR, vol. abs/2104.11746 (2021). http://arxiv.org/abs/2104.11746

  39. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  40. Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)

    Google Scholar 

  41. Nanjundan, S., Sankaran, S., Arjun, C.R., Paavai Anand, G.: Identifying the Number of Clusters for K-Means: A Hypersphere Density Based Approach. CoRR, vol. abs/1912.00643 (2019). http://arxiv.org/abs/1912.00643

  42. Kay, W., Carreira, J., Simonyan, K., et al.: The Kinetics Human Action Video Dataset. CoRR, vol. abs/1705.06950 (2017). http://arxiv.org/abs/1705.06950

  43. Chen, K., Wang, J., Pang, J., et al.: MMAction2: Open-Source Toolbox for Video Understanding. https://github.com/open-mmlab/mmaction2 Accessed 11 Feb 2022

  44. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR, vol. abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  45. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K. Q.: Deep networks with stochastic depth. European conference on computer vision, pp. 646–661, Springer (2016). https://doi.org/10.1007/978-3-319-46493-0_39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zarichkovyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zarichkovyi, A., Stetsenko, I.V. (2023). Hard Samples Make Difference: An Improved Training Procedure for Video Action Recognition Tasks. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 544. Springer, Cham. https://doi.org/10.1007/978-3-031-16075-2_36

Download citation

Publish with us

Policies and ethics