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Abstract. In context of laser powder bed fusion (L-PBF), it is known
that the properties of the final fabricated product highly depend on the
temperature distribution and its gradient over the manufacturing plate.
In this paper, we propose a novel means to predict the temperature gra-
dient distributions during the printing process by making use of neural
networks. This is realized by employing heat maps produced by an op-
timized printing protocol simulation and used for training a specifically
tailored recurrent neural network in terms of a long short-term memory
architecture. The aim of this is to avoid extreme and inhomogeneous
temperature distribution that may occur across the plate in the course
of the printing process.
In order to train the neural network, we adopt a well-engineered simu-
lation and unsupervised learning framework. To maintain a minimized
average thermal gradient across the plate, a cost function is introduced
as the core criteria, which is inspired and optimized by considering the
well-known traveling salesman problem (TSP). As time evolves the un-
supervised printing process governed by TSP produces a history of tem-
perature heat maps that maintain minimized average thermal gradient.
All in one, we propose an intelligent printing tool that provides control
over the substantial printing process components for L-PBF, i.e. optimal
nozzle trajectory deployment as well as online temperature prediction
for controlling printing quality.

Keywords: Additive manufacturing, laser beam trajectory optimiza-
tion, powder bed fusion printing, heat simulation, linear-quadratic con-
trol

1 Introduction

In contrast to traditional machining, additive manufacturing (AM) builds ob-
jects layer by layer through a joining process of materials making the fabrication
of individualized components possible across different engineering fields. The
laser powder bed fusion (L-PBF) technique as an AM process, that we focus
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on in this study, uses a deposited powder bed which is selectivity fused by a
computer-controlled laser beam [17]. The extreme heating by the laser on the
one hand, and on the other hand the influence of the degree of homogeneity
of the heat distribution on the printing quality in L-PBF, make it highly chal-
lenging to conduct the printing process in an intelligent way that may guarantee
high quality printing results. As explained in more detail when discussing related
work, there has thus been a continuous effort to (i) propose beneficial printing
paths that help to avoid unbalanced heating and (ii) to forecast the heat distri-
bution in order assess the potential printing quality and terminate printing in
case of foreseeable flaws.

In this paper, we propose to couple a laser beam trajectory devised on the
basis of a heuristic control during the fabrication phase of L-PBF with prediction
based on neural networks. The developed novel framework addresses both the
abovementioned main issues in L-PBF and represents an intelligent printing tool
that provides control over the printing process. To this end, we aim at conduct-
ing controlled laser beam simulation that approximately achieves temperature
constancy on a simulated melted power bed. In addition, we opt to perform
temperature rate of change prediction as an important factor for microscopic
structure of the final fabricated product.

The main novelty of the current paper is to adopt long-short-term memory
(LSTM) [8] prediction framework, which is introduced in Section 4 to predict the
temperature distribution and its gradient during printing. This consequently can
be used to avoid any overheating by taking necessary actions in advance, namely
stopping the printing process to avoid the printer damage due to overheated
deformed parts of the printing product. Based on this, we conjecture that our
developed pipeline may provide a highly valuable step for practical printing that
provides quality control of the printed product, while being efficient with regard
to energy consumption and use of material. Finally, in Section 5, we present an
effective numerical test concerning the predicted temperature gradients.

In Section 3 of this paper a simulation framework is brought out by recalling
the heat transfer model together with a cost function that consists of two terms
aiming to maintain almost a constant temperature with a low spatial gradient
across the power bed area. For simplicity, we confine ourselves to a 2-dimensional
domain, which is still a realistic description of printing over the manufacturing
plate. In Subsection 3.2, the idea of the travelling salesman problem (TSP) as
a heuristics for the laser beam steering is explained; being one of the most
fundamental and well-studied NP-hard problems in the field of combinatorial
optimization (e.g. [4,7]), we will use a stochastic optimization strategy (simulated
annealing) to establish an optimal laser trajectory.

2 Related work in Laser Powder Bed Additive
Manufacturing

In general, a variety of different laser beam parameters such as laser power,
scan speed, building direction and laser thickness influence the final properties
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of the fabricated product. Due to intensive power of laser during additive man-
ufacturing, the printed product can have defects, such as deviations from the
target geometry or cracks caused by large temperature gradients. For example,
inhomogeneous heating may lead to unmelted powder particles that can locally
induce pores and microscopic cracks [6]. At the same time, the cooling process
determines the microstructure of the printed workpiece and thus its material
properties, such as strength or toughness, which depend on the proportion of
carbon embedded in the crystal structure of the material [1].

In a broader view, machine learning approaches may be deployed to provide
monitoring capabilities over varying factors of L-PBF, namely the used metal
powder and its properties both at the initial time of spread and during the
printing process as well as the laser beam parameters, aiming to investigate and
avoid any defect generation during the fabrication. See [2] for an survey.

Concerning the powder properties, different capturing technologies along
with machine learning tools are used to automate the task of defect detection
and avoidance during the printing process. In [19,20], the k-means clustering [14]
and convolution neural network (CNN) [12] respectively, were used to detect and
classify defects at the time of initial powder spread and their probable conse-
quences during the entire printing phase and based on captured grey images.
In [11], high resolution temporal and evolving patterns are captured using a
commercial EOS M270 system to find layer-wise heat inhomogeneities induced
by the laser. In [10], an inline coherent imaging (ICI) system was used to moni-
tor the defects and unstable process regimes concerning the morphology changes
and also the stability of the melt pools. Here, the back scattered intensities from
the melt pool samples are measured as a function of their heights called A-lines.
Later, a Gaussian fitting of individual A-lines is performed to determine cen-
troid height and amplitude of melt pools as a function of time corresponding to
a range of different stainless steel powders with different properties.

About the laser beam and its parameter optimization task one can avoid
conducting expensive real experiments, in terms of material and power usage,
by simulating the printing process by means of finite element method [5] (FEM),
Lattice Boltzmann method (LBM) or finite volume method (FVM) See [3,18]
for extensive surveys. Later the gathered simulated data may be used in a data-
driven machine learning approach within a L-PBF framework. In this context, a
prediction task of thermal history was performed in [13] by adopting a recurrent
neural network (RNN) structure with a Gated Recurrent Unit (GRU) in a L-PBF
process. A range of different geometries are simulated by FEM while accounting
for different laser movement strategies, laser power and scan speed. A three-
dimensional FEM is adopted in [24] to simulate the laser beam trajectory and
investigate its effects on the residual stresses of the parts. The simulation results
show modifications of the residual stress distributions and their magnitudes,
that was validated through experimental tests, as a result of varying laser beam
trajectory type. A parametric study [25] used the same FEM simulation setup
as [24] with three varying factors namely the laser beam speed, the layer thickness
and the laser deposition path width. While each factor value varies in its range
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from low, medium to high the hidden relations among the factors and their
affects on residual stresses and part distortions are revealed.

In context of FEM simulation with a steering source of heat to represent the
laser movement, one can refer to the work developed in [21]. Here, the residual
stresses during the printing is predicted though the laser nozzle steering rule is
not revealed.

3 Heat transfer model and TSP formulation

As indicated, we first describe our heat simulation setting which is the framework
for the TSP optimization protocol described in the second part of this section.

3.1 Heat simulation framework

We set up a simulation environment, namely (i) a moving source of heat (cf. (3))
to act as a laser beam on (ii) an area Ω ⊂ R2 simulated as deposition of alu-
minium metal powder called a plate. We assume that the plate is mounted to
a base plate with large thermal conductivity, which makes the choice of Dirich-
let boundary conditions with constant boundary temperature appropriate; if the
surrounding is an insulator, then a reflecting i.e. zero-flux or von Neuman bound-
ary condition is more suitable. A sequence of laser beam movements, called a
trajectory, is followed so that at each point the heat equation (1) is resolved
based on FEM providing us a temperature map that varies on different plate
locations as the time evolves.

Letting u be the temperature across an open subset Ω ⊂ R2 as time t evolves
in ∈ [0, T ], the heat equation that governs the time evolution of u reads

∂

∂t
u(x, y, t) = α∇2u(x, y, t) + βI(x, y) , (x, y, t) ∈ Ω◦ × (0, T ) (1a)

u(x, y, t) = θ0 (x, y, t) ∈ ∂Ω × [0, T ] (1b)
u(x, y, 0) = u0(x, y) (x, y) ∈ Ω (1c)

where we denote by

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
(2)

the Laplacian of some function φ ∈ C2, by Ω◦ we denote the interior of the
domain Ω, and by ∂Ω its piecewise smooth boundary; here u0 is some initial
heat distribution, θ0 is the constant ambient space temperature (20◦C), and we
use the shorthands

α :=
κ

cρ
and β :=

1

cρ

with κ, c and ρ all in R+, denoting thermal conductivity, specific heat capacity
and mass density. Our power density distribution of choice to simulate a laser
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beam is a Gaussian function :

I (x, y) = I0 · exp


−2

[(
x− xc
ω

)2

+

(
y − yc
ω

)2
] (3)

with an intensity constant

I0 =
2P

πω2
(4)

by knowing ω and P to be the radius of the Gaussian beam waist and the
laser power, respectively. In our study we let x ∈ [−1,+1], y ∈ [−1,+1] with
(x, y) ∈ Ω◦, t ∈ R+ and also u (x, y, 0) = 0. The aluminium thermal properties
are used to simulate the metal powder spread across the manufacturing plate.

We solved (1) using [15] by setting P = 4200 (W) and ω = 35 pixels while
letting (xc, yc) to take all possible trajectory points such that the domain Ω◦

always be affected by five consecutive heat source moves. In this way, we simu-
lated the heat source movement across the board.

Control objective. By adoption of the TSP based protocol, we aim to
minimize the value of a desired objective function :

J(m) =
1

2

∫ T

0

(∫
Ω

|∇um(z, t)|2 +
(
um(z, t)− ug

)2
dz

)
dt (5)

with
um = um(z, t) , z = (x, y) ∈ Ω◦, t ∈ [0, T ] (6)

being the solution of the heat equation (1) on the interval [0, T ] under the control

m : [0, T ]→ Ω◦ , t 7→ (xc(t), yc(t)) (7)

that describes the trajectory of the center of the laser beam. Moreover, we have
introduced ug as the desired target temperature to be maintained over the do-
main Ω◦ as time t evolves.

The motivation behind (5) is to maintain a smooth temperature gradient
over the entire plate for all t ∈ [0, T ] as is achieved by minimizing the L2-norm
of the gradient, ∇u, while at the same time keeping the (average) temperature
near a desired temperature ug for any time t.

We proceed, by dividing the entire plate Ω◦ into 4 × 4 sub-domains (see
Fig. 1) and investigate our objective function (5) within each sub-domain as
explained in Section 5.

3.2 TSP-based Formulation

A common assumption among numerous variants of the TSP [4], as an NP-hard
problem [7], is that a set of cities have to be visited on a shortest possible tour.
Let Cn×n be a symmetric matrix specifying the distances corresponding to the
paths connecting a vertex set V = {1, 2, 3, · · · , n} of cities to each other with
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Fig. 1: We divide the entire domain Ω◦ containing the diffused temperature val-
ues into 4×4 sub-domains separated by white lines. Within each sub-domain, (5)
is computed to reveal how the temperature gradient |∇um(·, t)| evolves as a func-
tion of time t evolves and how the average temperature ū is maintained near to
a target value of ug. Note, the laser beam positions are in this image irrelevant.

n ∈ N to be the number of cities. A tour over the complete undirected graph
G (V, C) is defined as a cycle passing through each vertex exactly once. The
traveling salesman problem seeks a tour of minimum distance.

To adopt the TSP into our context, we formulate its input V as the set of all
16× 16 stopping points of the heat source over the board Ω◦, and the set C as a
penalty matrix with each element Cij ≥ 0 being the impact (i.e. cost) of moving
the heat source from a i ∈ V to j ∈ V. For every vertex i ∈ V, the possible
movements to all j 6= i with the associated cost (5) is computed and assigned to
Cij (see below for details). With this formulation, we want to remind the reader
that C elements are nonnegative and follow the triangle inequality :

Cij ≤ Cik + Ckj (8)

with i, j, k ∈ V.
Note that, C matrix is obtained based on a prior set of temperature maps

produced using FEM without enforcing any particular protocol on them.
With this general formulation at hand, let us have a closer look at the dis-

cretized form of (5) that was used in current study to compute the elements of
the penalty matrix:

Cij =

∣∣∣∣∣∣
4×4∑
l=1

( ∥∥Ψ (i, l)
∥∥2 + (Λ (i, l)− ug

)2 )− 4×4∑
l=1

( ∥∥Ψ (j, l)
∥∥2 + (Λ (j, l)− ug

)2 )∣∣∣∣∣∣ (9)

with l to be the sub-domain index. In addition, Ψ (·, l) =
∑
z∈Ωl

∑
t∈tl
∇um (z, t)

represents the temperature gradient aggregation within each sub-domain, and
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Λ (·, l) = 1
|Ωl|

∑
z∈Ωl

∑
t∈tl

um (z, t) is the average temperature value of each sub-
domain, with tl to be the time period on which the nozzle operates on Ωl.
Here, by |Ωl|, we mean the number of discrete points in Ωl ⊂ Ω◦. In other
words, (9) is the TSP cost of moving the nozzle from the ith to the jth stopping
point that depends on (a) the mean square deviation of the temperature field
from constancy and (b) on the mean square deviation from the global target
temperature ug. In our simulation, the nozzle moves in the direction of the
shortest (Euclidean) path connecting two successive stopping points. Thereby
we assume the nozzle always adjusts its velocity so that the path between any
arbitrarily chosen stopping points i and j always takes the same amount of time.
The motivation behind this is to avoid heating up the entire domain Ω◦ as a
result of keeping the nozzle velocity constant.

In practice no polynomial-time algorithm is known for solving the TSP [7],
so we adopt a simulated annealing algorithm [23] that was first proposed in
statistical physics as a means of determining the properties of metallic alloys at
a given temperatures [16]. In the TSP context, we adopt [23] to look for a good
(but in general, sub-optimal) tour corresponding to the movement of the heat
source leading to the minimization of (9).

In Section 5, we reveal our prediction results obtained by adopting a TSP
based heuristic along with the LSTM network. Before moving to the next section,
let us observe a subset of temperature maps obtained based on TSP shown as
Fig. 2.

Fig. 2: A subset of heat maps produced by FEM as the solution to the heat
equation (1). One clearly observes the effect of the previous laser positions on
current status of the map, in terms of diffused temperature. The TSP as a
heuristics steers the heat source across the plate aiming to keep temperature
constancy. Note that all temperatures are in Celsius.
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4 The LSTM Approach

Let us start discussion of our deep learning framework structure by investigating
its LSTM [8] cell building blocks shown as Fig. 3a used to comprise a stack of
three LSTM layers (see Fig. 3b) followed by a fully connected layer.

Here, we use temperature gradient values of µ = 14 previous (i.e. from pre-
vious time) heat maps to predict the gradients values of the current heat map.
By letting ζ to be the current heat map, its history feature values formally lie
in a range of [ζ − µ, ζ − 1] heat maps with ζ > µ. By considering each heat
map to have 16 sub-domains and the same number of gradient features Ψ (·, l),
each corresponding to one sub-domain, we obtain in total ν = µ × 16 number
of gradient feature history values that we vectorise to frame the vector X ∈ Rν .
Our aim is to use sub-sequences from X to train the stacked of LSTMs and
forecast a sequence of 16 number of gradient feature values corresponding to the
sub-domains of a heat map of interest ζ.

Let us briefly discuss the weight and bias matrix dimensions of each LSTM
cell. Here, we use q ∈ N as the number of hidden units of each LSTM cell and
n ∈ N to represent the number of features that we obtain from FEM based
heat maps and fed to the LSTM cell. More specifically, we have only one feature
Ψ (·, l) per sub-domain, i.e. n = 1. In practice, during the training process and
at a particular time t′, a batch of input feature values X ⊃ X 〈t′〉 ∈ Rb×n with
b ∈ N to be the batch size, are fed to each LSTM cells of the lowest stack level in
Fig. 3b. Here LSTM learns to map each feature value in X 〈t′〉 to its next adjacent
value in X as its label. The mapping labels are applied during the training and
to the only neuron Rη ∈ R of the last fully connected layer with η = 1.

In addition to X 〈t′〉, each LSTM cell accepts two others inputs, namely
h〈t

′−1〉 ∈ Rb×q and c〈t
′−1〉 ∈ Rb×q, the so called the hidden state and cell state

both of which are already computed at the time t′−1. Here, the cell state c〈t
′−1〉

carries information from the intervals prior to t′.
A few remarks on how the cell state c〈t

′〉 (10) at time t′ is computed by
the formula (10) below are in order: A more precise look at (10) reveals that it
partially depends on Γf � c〈t

′−1〉 with c〈t
′−1〉 being the cell state at the previous

time t′ − 1. The term Γf satisfies

c〈t
′〉 = Γu � c̃〈t

′〉 + Γf � c〈t
′−1〉 (10)

with � representing the element-wise vector multiplication. As (10) further
shows, c〈t

′〉 also depends on c̃〈t
′〉 that itself is computed based on the feature

vector X 〈t′〉 and the previous hidden state h〈t
′−1〉 as :

c̃〈t
′〉 = tanh

([(
h〈t

′−1〉
)
b×q

(
X 〈t

′〉
)
b×n

]
×Wc + (bc)b×q

)
(11)

with × visualizing in this work standard matrix multiplication, and bc and Wc

to be the corresponding bias and weight matrices, respectively.
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(a) (b)

Fig. 3: (a) A graphical representation of the LSTM cell accepting the hidden
state h〈t

′−1〉 and the cell state c〈t
′−1〉 from the previous LSTM and the feature

vector X 〈t′〉 at the current time. (b) A schematic representation of the adopted
stack of LSTMs comprised of three recurrent layers processing the data. The
upper LSTM layer is followed by a fully connected layer. The network performs a
regression task being trained based on half-mean-square-error loss function (16).
Note, the fully connected layer is established between the output of LSTM stack
h
〈t′〉
3 and the only neuron of the last layer R〈t

′〉
η with η = 1.

Equation (10) contains two further terms, Γu and Γf , called the update gate
and forget gate defined as

Γu = σ

([(
h〈t

′−1〉
)
b×q

(
X 〈t

′〉
)
b×n

]
×Wu + (bu)b×q

)
(12)

and

Γf = σ

([(
h〈t

′−1〉
)
b×q

(
X 〈t

′〉
)
b×n

]
×Wf +

(
bf
)
b×q

)
(13)

that are again based on the feature vector X 〈t′〉 and the previous hidden state
h〈t

′−1〉 with bu, bf , Wu and Wf to be the corresponding biases and weight
matrices. Let us shortly conclude here, that the feature vector X 〈t′〉 and the
previous hidden state h〈t

′−1〉 are the essential ingredients used to compute c̃〈t
′〉,

Γu and Γf , that are all used to update the current cell state c〈t
′〉 (10).

The motivation to use the sigmoid function σ in structure of the gates shown
in (12) and (13) is its activated range in [0, 1], leading them in extreme cases to
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be fully on or off letting all or nothing to pass through them. In non-extreme
cases they partially contribute the previous cell state c〈t

′−1〉 and the on the fly
computed value c̃〈t

′〉 to the current cell state c〈t
′〉 as shown in (10).

To give a bigger picture, let us visualize the role of the Γu and Γf gates
concerning the cell state c〈t

′〉. In Fig. 3a, a direct line connecting c〈t
′−1〉 to c〈t

′〉

carries the old data directly from time t′ − 1 → t′. Here, one clearly observes
the Γu and Γf gates both are connected by + and × operators to the passed
line. They linearly contribute, as shown in (12) and (13), the current feature
value X 〈t′〉 and the adjacent hidden state h〈t

′−1〉 to update the current cell state
c〈t

′〉. Meanwhile, Γu shares its contribution through × operator with c̃〈t
′〉 to the

passing line.
Finally, to make the current LSTM activated we need the cell state value at

the time t′, namely c〈t
′〉, that we obtain from (10) and also the so called output

gate obtained from

Γo = σ

([(
h〈t

′−1〉
)
b×q

(
X 〈t

′〉
)
b×n

]
×Wo + (bo)b×q

)
(14)

with Γo ∈ [0, 1], and bo andWo to be the corresponding bias and weight matrices.
The final activated value of the LSTM cell is computed by

h〈t
′〉 = Γo � tanh

(
c〈t

′〉
)
. (15)

Here, the obtained activated value h〈t
′〉 from (15) will be used as the input

hidden state to the next LSTM cell at the time t′ + 1.
Let us also mention that all the biases bc, bu, bf , bo ∈ Rb×q and the weight

matrices are further defined as

Wc :=
[

(Wch)q×q (Wcx)n×q

]>
, Wu :=

[
(Wuh)q×q (Wux)n×q

]>
Wf :=

[ (
Wfh

)
q×q

(
Wfx

)
n×q

]>
, Wo :=

[
(Woh)q×q (Wox)n×q

]>
leading both the c̃〈t

′〉, c〈t
′〉 ∈ Rb×q.

Finally, we have a fully connected layer that maps the output h<·>b×q of the
stacked LSTM to the only neuron of the output layer Rη. This is achieved during
the training process while the weight matrix Ŵ ∈ Rq×η and bias vector b̂ ∈ Rb×η
corresponding to the fully connected layer are updated based on a computed loss
L using half-mean-square-error (16) between the network predictions and target
temperature gradient values obtained from the heat maps produced by FEM.

L =
1

2ηb

b∑
i1=1

η∑
i2=1

(pi1i2 − yi1i2)
2 (16)

Here, p and y values represent the predicted and the target gradient temperature
values, respectively.
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5 Results

To begin with, we consider a set of computed root-mean-square-error measures
(RMSE) between the predicted and the target gradient values corresponding to
the nozzle moves as shown in Fig. 4. More precisely, each curve value represents
a computed RMSE between all 4 × 4 sub-domains gradient feature values of
predicted heat map ζ and their ground truth counterpart. Since we use a history
of µ = 14 previous gradient heat maps, the first prediction can be performed for
the 15th nozzle move. Among all the measured RMSE values, we highlight four
of them as can be seen in Fig. 4, that correspond to the 25th, 50th, 75th and
100th percentiles.

Fig. 4: Each curve value represents a computed RMSE between all 4 × 4 sub-
domains gradient feature values of predicted heat map ζ and their ground truth
counterpart. The RMSE computation can be started from 15th nozzle move
onward, since we use a history of µ = 14 previous gradient maps. Those RMSE
measures, highlighted as × in ascending order correspond to the 25th, 50th, 75th

and 100th percentiles, respectively.

As one observes in Fig. 4, a relatively low RMSE measure is obtained almost
across all nozzle moves on horizontal axis, though there exist some outliers. We
further visualize the corresponding prediction results of the percentiles as Fig. 5.
Specifically, let us take the 25th RMSE percentile computed between the black
and its overlapping part of the pink curve shown in Fig. 5a. The black curve in
Fig. 5a is comprised of 4×4 forecasted vectorized gradient feature values of heat
map sub-domains produced by 54th nozzle move with a RMSE equal to 0.009,
compared to its overlapping pink curve. In this case, we let the i as the nozzle
move number to range in [ζ − µ, ζ − 1] to produce a history of feature gradient
values corresponding to the heat map with ζ = 54. This consequently means,
the non-overlapping part of the pink curve in Fig. 5a represent the vectorized
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history feature values of 40th to 53th heat maps that comprise µ = 14 number
of preceding heat maps of ζ = 54, each of them with 4 × 4 sub-domains. The
black curves in Figs. 5b, 5c and 5d are also comprised of the predicted gradient
feature values of the heat maps ζ equal to 129, 220 and 244, respectively, that
are forecasted based on µ number of their previous heat maps.

A closer look at the four prediction samples shown in Figs. 5 reveals that
the even the 100th percentile, that marks some kind of outlier, is accurately
predicted in that the shape of the black curve tracks the pink curve (ground
truth). Concerning other three RMSE percentile values, the synchronicity among
the black and its pink curves is preserved equally well though in some part we
do not have a full overlap.

Finally, the parameters used during the training phase are revealed to be the
Adam optimizer [9] applied on batch data of size 6. The epoch value is chosen to
be 350 that results to a meaningful reduction of RMSE and loss measures within
each batch. The initial learning rate was also chosen to be 0.008 with a drop
factor of 0.99 concerning each 12 epochs. To avoid the overfitting phenomenon,
the flow of data within the network structure is randomly adjusted by setting
the LSTMs outputs with a probability of 0.25 to zero [22].

6 Conclusion

We developed a novel and practical pipeline and mathematically justified its
comprising components. Our proposed model consists of two major components,
namely the simulation part of a laser power bed fusion setup based on FEM and
an intelligent agent based on LSTM network that actively judges the simulation
results based on a proposed cost function. The FEM simulation can be robustly
applied before conducting expensive real-world printing scenarios so that the
intelligent component of the pipeline can decide on early stopping of the printing
process. The LSTM based network predicts the forthcoming temperature rate
of change across the simulated power bed based on previously seen temperature
history leading us to have a means of control to achieve a final optimal printing
process as visualized by our obtained results.
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(a) RMSE=0.009

(b) RMSE=0.014

(c) RMSE=0.021

(d) RMSE=0.109

Fig. 5: The ground truth and predicted gradient feature values used to compute
the RMSE measures of 25th, 50th, 75th and 100th percentiles shown in (a), (b),
(c) and (d), respectively. The ground truth pink curves obtained and vectorized
from µ number of previous heat maps preceding to the current heat map of
ζ. Here we use i as the nozzle move number to vary in its range [ζ − µ, ζ − 1]
producing a set of gradient feature history values shown in pink. In addition the
vectorized ground truth gradient feature values of the current heat map ζ are
also shown as part of the pink curve that overlaps with the black curve. The
black curve is the forecasted vectorized gradient feature values corresponding to
the ζ heat map. We also have noted the RMSE measure concerning each case
(a) to (d) below it. The last case (d) with the worst RMSE (See Fig. 4) shows
a clear asynchronous prediction, though the shape of the forecasted curve looks
to conform with its overlapping ground truth. In cases (a), (b) and (c) we have
synchronous predictions though in some parts the black curve is not predicting
the pink one accurately.
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