Skip to main content

Bicriteria Algorithms for Maximizing the Difference Between Submodular Function and Linear Function Under Noise

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2022)

Abstract

Submodular optimization is an essential problem in many fields due to its diminishing marginal benefit. This property of submodular function plays an important role in many applications. In recent years, the problem of maximizing a non-negative monotone submodular function minus a linear function under various constraints has gradually emerged and is widely used in many practical scenarios such as team formation and recommendation. In this paper, We focus on maximizing a non-negative monotone normalized submodular function minus a linear function under \(\epsilon \)–multiplicative noise and the result is similar in the case of \(\epsilon \)-additive noise. Many previous studies were conducted in a noiseless environment, here we consider optimization of this problem in a noisy environment for the first time. In addition, our study will be conducted under two situations, that is, the cardinality constraint and the matroid constraint. Based on these two situations, we propose two bicriteria approximation algorithms respectively and all these algorithms can obtain good results.

This work was supported in part by the National Natural Science Foundation of China (11971447, 11871442), and the Fundamental Research Funds for the Central Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brualdi, R.A.: Comments on bases in dependence structures. Bull. Aust. Math. Soc. 1(2), 161–167 (1969)

    Article  MathSciNet  Google Scholar 

  2. Du, D., Li, Y., Xiu, N., Xu, D.: Simultaneous approximation of multi-criteria submodular function maximization. J. Oper. Res. Soc. China 2(3), 271–290 (2014)

    Article  MathSciNet  Google Scholar 

  3. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You Shrink! LNCS, vol. 2570, pp. 11–26. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36478-1_2

    Chapter  Google Scholar 

  4. Feldman, M.: Guess free maximization of submodular and linear sums. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 380–394. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_28

    Chapter  MATH  Google Scholar 

  5. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  6. Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in gaussian processes. In: 22th International Conference on Machine Learning, pp. 265–272. PMLR (2005)

    Google Scholar 

  7. Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adaptation layer (2016)

    Google Scholar 

  8. Gölz, P., Procaccia, A.D.: Migration as submodular optimization. In: 33th AAAI Conference on Artificial Intelligence, pp. 549–556. AAAI Press, Palo Alto, California USA (2019)

    Google Scholar 

  9. Horel, T., Singer, Y.: Maximization of approximately submodular functions. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  10. Harshaw, C., Feldman, M., Ward, J., et al.: Submodular maximization beyond non-negativity: guarantees, fast algorithms, and applications. In: 36th International Conference on Machine Learning, pp. 2634–2643. PMLR (2019)

    Google Scholar 

  11. Kazemi, E., Minaee, S., Feldman, M., et al.: Regularized submodular maximization at scale. In: 38th International Conference on Machine Learning, pp. 5356–5366 (2021)

    Google Scholar 

  12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. Association for Computing Machinery, New York (2003)

    Google Scholar 

  13. Leskovec, J., Krause, A., Guestrin, C., et al.: Cost-effective outbreak detection in networks. In: 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. Association for Computing Machinery, New York (2007)

    Google Scholar 

  14. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular maximization: personalized data summarization. In: 33th International Conference on Machine Learning, pp. 1358–1367. PMLR (2016)

    Google Scholar 

  15. Nikolakaki, S.M., Ene, A., Terzi, E.: An efficient framework for balancing submodularity and cost. In: 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1256–1266. Association for Computing Machinery, New York (2021)

    Google Scholar 

  16. Nguyen, L., Thai, M.T.: Streaming k-submodular maximization under noise subject to size constraint. In: 37th International Conference on Machine Learning, pp. 7338–7347. PMLR (2020)

    Google Scholar 

  17. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

    Article  MathSciNet  Google Scholar 

  18. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  19. Singer, Y., Vondrák, J.: Information-theoretic lower bounds for convex optimization with erroneous oracles. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  20. Shahaf, D., Horvitz, E.: Generalized task markets for human and machine computation. In: 24th AAAI Conference on Artificial Intelligence, pp. 986–993. AAAI Press, Palo Alto, California USA (2010)

    Google Scholar 

  21. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: 14th Annual ACM Symposium on Theory of Computing, pp. 67–74. Association for Computing Machinery, New York (2008)

    Google Scholar 

  22. Yang, R., Xu, D., Cheng, Y., et al.: Streaming submodular maximization under noises. In: 39th International Conference on Distributed Computing Systems, pp. 3348–357. IEEE, Dallas (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufang Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geng, M., Gong, S., Liu, B., Wu, W. (2022). Bicriteria Algorithms for Maximizing the Difference Between Submodular Function and Linear Function Under Noise. In: Ni, Q., Wu, W. (eds) Algorithmic Aspects in Information and Management. AAIM 2022. Lecture Notes in Computer Science, vol 13513. Springer, Cham. https://doi.org/10.1007/978-3-031-16081-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16081-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16080-6

  • Online ISBN: 978-3-031-16081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics