Skip to main content

Rebop: Reputation-Based Incentives in Committee-Based Blockchains

  • Conference paper
  • First Online:
Distributed Applications and Interoperable Systems (DAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13272))

Abstract

Blockchains based on proof-of-work suffer from serious drawbacks, such as high computational overhead, long confirmation time, and forks. Committee-based blockchains provide an alternative that tackles these problems. These blockchains use a committee to approve a block at each height. However, rewarding the committee for their work is challenging. The reward mechanism must be fair and robust to attacks.

In this paper, we study leader-based reward mechanisms in committee-based blockchains in the presence of rational, colluding, and Byzantine committee members. First, we study the incentives of committee members to deviate and show that an existing reward mechanism is susceptible to attacks from both colluding and Byzantine members.

We then propose a reputation-based leader selection mechanism that provides sufficient incentives to coerce rational members to abide by the protocol, and significantly limits the possible gains of collusion. Additionally, our approach reduces the ability of Byzantine members to perform targeted attacks.

This work is partially funded by the BBChain and Credence projects under grants 274451 and 288126 from the Research Council of Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: Bar fault tolerance for cooperative services. In: Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, pp. 45–58 (2005)

    Google Scholar 

  2. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni, S.: Correctness and fairness of tendermint-core blockchains. arXiv preprint arXiv:1805.08429 (2018)

  3. Amoussou-Guenou, Y., del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni, S.: On fairness in committee-based blockchains. In: 2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020) (2020)

    Google Scholar 

  4. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  5. Bano, S., et al.: Consensus in the age of blockchains. arXiv preprint arXiv:1711.03936 (2017)

  6. Baudet, M., et al.: State machine replication in the libra blockchain. The Libra Association, Technical report (2019)

    Google Scholar 

  7. Cai, W., Jiang, W., Xie, K., Zhu, Y., Liu, Y., Shen, T.: Dynamic reputation-based consensus mechanism: real-time transactions for energy blockchain. Int. J. Distrib. Sens. Netw. 16(3), 1550147720907335 (2020)

    Article  Google Scholar 

  8. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret. Comput. Sci. 777, 155–183 (2019)

    Article  MathSciNet  Google Scholar 

  9. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_2

    Chapter  Google Scholar 

  10. Do, T., Nguyen, T., Pham, H.: Delegated proof of reputation: a novel blockchain consensus. In: Proceedings of the 2019 International Electronics Communication Conference, pp. 90–98 (2019)

    Google Scholar 

  11. Fanti, G., Kogan, L., Oh, S., Ruan, K., Viswanath, P., Wang, G.: Compounding of wealth in proof-of-stake cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 42–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_3

    Chapter  Google Scholar 

  12. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

  13. Hanke, T., Movahedi, M., Williams, D.: DFINITY technology overview series, consensus system. arXiv preprint arXiv:1805.04548 (2018)

  14. He, Q., Wu, D., Khosla, P.: SORI: a secure and objective reputation-based incentive scheme for ad-hoc networks. In: 2004 IEEE Wireless Communications and Networking Conference, pp. 825–830. IEEE (2004)

    Google Scholar 

  15. Herlihy, M., Moir, M.: Enhancing accountability and trust in distributed ledgers. arXiv preprint arXiv:1606.07490 (2016)

  16. Kantarci, B., Glasser, P.M., Foschini, L.: Crowdsensing with social network-aided collaborative trust scores. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2015)

    Google Scholar 

  17. Kwon, J.: Tendermint: consensus without mining. Draft v. 0.6, fall 1(11) (2014)

    Google Scholar 

  18. Kwon, J., Buchman, E.: Cosmos: a network of distributed ledgers (2016). https://cosmos.network/whitepaper

  19. Lagaillardie, N., Djari, M.A., GĂĽrcan, Ă–.: A computational study on fairness of the tendermint blockchain protocol. Information 10(12), 378 (2019)

    Article  Google Scholar 

  20. Lev-Ari, K., Spiegelman, A., Keidar, I., Malkhi, D.: FairLedger: a fair blockchain protocol for financial institutions. In: 23rd International Conference on Principles of Distributed Systems (OPODIS 2019) (2020)

    Google Scholar 

  21. Li, W., Andreina, S., Bohli, J.-M., Karame, G.: Securing proof-of-stake blockchain protocols. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 297–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_17

    Chapter  Google Scholar 

  22. Liu, J., Li, W., Karame, G.O., Asokan, N.: Toward fairness of cryptocurrency payments. IEEE Secur. Priv. 16(3), 81–89 (2018)

    Article  Google Scholar 

  23. Liu, Y., Liu, J., Zhang, Z., Yu, H.: A fair selection protocol for committee-based permissionless blockchains. Comput. Secur. 91, 101718 (2020)

    Google Scholar 

  24. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science, pp. 120–130. IEEE (1999)

    Google Scholar 

  25. Motepalli, S., Jacobsen, H.A.: Reward mechanism for blockchains using evolutionary game theory. arXiv preprint arXiv:2104.05849 (2021)

  26. Mousa, H., Mokhtar, S.B., Hasan, O., Younes, O., Hadhoud, M., Brunie, L.: Trust management and reputation systems in mobile participatory sensing applications: a survey. Comput. Netw. 90, 49–73 (2015)

    Google Scholar 

  27. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report (2008)

    Google Scholar 

  28. Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz, E.: Proof-of-stake consensus mechanisms for future blockchain networks: fundamentals, applications and opportunities. IEEE Access 7, 85727–85745 (2019)

    Google Scholar 

  29. de Oliveira, M.T., Reis, L.H., Medeiros, D.S., Carrano, R.C., Olabarriaga, S.D., Mattos, D.M.: Blockchain reputation-based consensus: a scalable and resilient mechanism for distributed mistrusting applications. Comput. Netw. 179, 107367 (2020)

    Google Scholar 

  30. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 315–324 (2017)

    Google Scholar 

  31. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_14

  32. Saleh, F.: Blockchain without waste: proof-of-stake. Rev. Financ. Stud. 34, 1156–1190 (2018)

    Google Scholar 

  33. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

    Google Scholar 

  34. Sukhwani, H., Martínez, J.M., Chang, X., Trivedi, K.S., Rindos, A.: Performance modeling of PBFT consensus process for permissioned blockchain network (hyperledger fabric). In: 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), pp. 253–255. IEEE (2017)

    Google Scholar 

  35. Vilaça, X., Denysyuk, O., Rodrigues, L.: Asynchrony and collusion in the N-party BAR transfer problem. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 183–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31104-8_16

  36. Wang, E.K., Liang, Z., Chen, C.M., Kumari, S., Khan, M.K.: PORX: a reputation incentive scheme for blockchain consensus of IIoT. Futur. Gener. Comput. Syst. 102, 140–151 (2020)

    Google Scholar 

  37. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pp. 347–356 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arian Baloochestani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baloochestani, A., Jehl, L., Meling, H. (2022). Rebop: Reputation-Based Incentives in Committee-Based Blockchains. In: Eyers, D., Voulgaris, S. (eds) Distributed Applications and Interoperable Systems. DAIS 2022. Lecture Notes in Computer Science, vol 13272. Springer, Cham. https://doi.org/10.1007/978-3-031-16092-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16092-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16091-2

  • Online ISBN: 978-3-031-16092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics