Skip to main content

Incentive Alignment Through Secure Computations

  • Conference paper
  • First Online:
Business Process Management (BPM 2022)

Abstract

We present a game-theoretic approach to analyzing the incentive structure in formal models of inter-organizational businesses processes. In such processes, the choices of each participants influence the outcome of others. A potential participant may be torn between the prospect of a highly preferable outcome on the one hand (e.g., a bonus on timely delivery), and the possibility that another player may make a choice (e.g., reallocation of the fast trucks) which renders that outcome impossible to achieve. We propose (a) an analysis which given the preferences of participants determines if the collaboration is at all meaningful; (b) an algorithm for modifying the incentive structure of such a process using both fines and outcome re-distribution to increase the benefit for all participants; and (c) a practical way of computing this algorithm while concealing the preferences of the collaborators for each other using secure multi-party computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From a practical perspective, if a node can never be reached based on a previous choice it need not an assignment.

  2. 2.

    Technically the players are only required to have k-level knowledge of the game, where k is the depth of the game tree.

  3. 3.

    Online at https://github.com/Frehaa/mpc-games.

References

  1. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  2. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability: complexity in DCR graphs. Acta Informatica 55(6), 489–520 (2018)

    Article  MathSciNet  Google Scholar 

  3. Di Ciccio, C., et al.: Blockchain support for collaborative business processes. Informatik Spektrum 42(3), 182–190 (2019)

    Article  Google Scholar 

  4. Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to secure multi-party computation. Found. Trends Privacy Secur. 2(2–3), 70–246 (2018)

    Article  Google Scholar 

  5. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  6. García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution of business processes on blockchain. In: BPM 2017, pp. 130–146 (2017)

    Google Scholar 

  7. Guanciale, R., Gurov, D., Laud, P.: Business process engineering and secure multiparty computation. Cryptol. Inf. Sec. Ser. 13, 129–149 (2015)

    Google Scholar 

  8. Heindel, T., Weber, I.: Incentive alignment of business processes. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 93–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_6

    Chapter  Google Scholar 

  9. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Declarative modelling and safe distribution of healthcare workflows. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151, pp. 39–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32355-3_3

    Chapter  Google Scholar 

  10. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (2020)

    Google Scholar 

  11. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 830–842. ACM, October 2016

    Google Scholar 

  12. Madsen, M.F., Gaub, M., Kirkbro, M.E., Høgnason, T., Slaats, T., Debois, S.: Collaboration among adversaries: distributed workflow execution on a blockchain. In: Symposium on Foundations and Applications of Blockchain (FAB 2018) (2018)

    Google Scholar 

  13. Mendling, J., Weber, I., Aalst, W.V.D., Brocke, J.V., et al.: Blockchains for business process management - challenges and opportunities. ACM Trans. Manag. Inf. Syst. 9(1), 4:1–4:16 (2018)

    Google Scholar 

  14. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  15. Object Management Group BPMN Technical Committee: Business Process Model and Notation, Version 2.0 (2013)

    Google Scholar 

  16. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–287. IEEE (2007)

    Google Scholar 

  17. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In: Proceedings of the 27th ACM Symposium on Applied Computing, pp. 1927–1934 (2012)

    Google Scholar 

  18. Rosemann, M.: Trust-aware process design. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 305–321. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_20

    Chapter  Google Scholar 

  19. Tiezzi, F., Re, B., Polini, A., Morichetta, A., Corradini, F.: Collaboration vs. choreography conformance in BPMN. Log. Methods Comput. Sci. 16 (2020)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions related to MPC with Bernardo David, as well as useful feedback from reviewers. This work is supported by Independent Research Fund Denmark, grant 0136-00144B, “DISTRUST” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Debois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haagensen, F., Debois, S. (2022). Incentive Alignment Through Secure Computations. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds) Business Process Management. BPM 2022. Lecture Notes in Computer Science, vol 13420. Springer, Cham. https://doi.org/10.1007/978-3-031-16103-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16103-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16102-5

  • Online ISBN: 978-3-031-16103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics