Abstract
Robotic Process Automation (RPA) provides a means to automate mundane and repetitive human tasks. Task Mining approaches can be used to discover the actions that humans take to carry out a particular task. A weakness of such approaches, however, is that they cannot deal well with humans who carry out the same task differently for different cases according to some hidden rule. The logs that are used for Task Mining generally do not contain sufficient data to distinguish the exact drivers behind this variability. In this paper, we propose a new Task Mining framework that has been designed to support engineers who wish to apply RPA to a task that is subject to variable human actions. This framework extracts features from User Interface (UI) Logs that are extended with a new source of data, namely screen captures. The framework invokes Supervised Machine Learning algorithms to generate decision models, which characterize the decisions behind variable human actions in a machine-and-human-readable form. We evaluated the proposed Task Mining framework with a set of synthetic UI Logs. Despite the use of only relatively small logs, our results demonstrate that a high accuracy is generally achieved.
This research has been supported by the Spanish Ministry of Science, Innovation and Universities under the NICO project (PID2019-105455GB-C31) and the Centro para el Desarrollo Tecnológico Industrial (CDTI) of Spain under the CODICE project (EXP 00130458/IDI-20210319 - P018-20/E09) and by the FPU scholarship program, granted by the Spanish Ministry of Education and Vocational Training (FPU20/05984).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Availabe at: www.spyrix.com and bestxsoftware.com/es/.
- 2.
We trained the model with this dataset: https://doi.org/10.5281/zenodo.2530277.
- 3.
The set of problems are available at: https://doi.org/10.5281/zenodo.5734323.
References
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Scheppler, B., Weber, C.: Robotic process automation. Informatik Spektrum 43(2), 152–156 (2020). https://doi.org/10.1007/s00287-020-01263-6
Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: Automated generation of executable RPA scripts from user interface logs. In: BPM, pp. 116–131 (2020)
Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: SmartRPA: a tool to reactively synthesize software robots from user interface logs. In: CAiSE, pp. 137–145 (2021)
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2018)
Bazhenova, E., Bülow, S., Weske, M.: Discovering decision models from event logs. In: BIS, pp. 237–251 (2016)
Brahmbhatt, S.: Shapes in Images, pp. 67–93. Apress, Berkeley, CA (2013)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA (1984)
Capgemini, C.: Robotic Process Automation - Robots conquer business processes in back offices (2017)
Denagama Vitharanage, I.M., Bandara, W., Syed, R., Toman, D.: An empirically supported conceptualisation of robotic process automation (RPA) benefits. In: ECIS (2020)
Egger, A., ter Hofstede, A.H., Kratsch, W., Leemans, S.J., Röglinger, M., Wynn, M.T.: Bot log mining: using logs from robotic process automation for process mining. In: ER, pp. 51–61 (2020)
Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.: Automated robotic process automation: a self-learning approach. In: OTM, pp. 95–112 (2019)
Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and robotic process automation: a perfect match. In: BPM, pp. 124–131 (2018)
Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th DSAA, pp. 80–89 (2018)
Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve the early stages of the robotic process automation lifecycle. In: CAiSE, pp. 446–461 (2019)
Kass, G.V.: An exploratory technique for investigating large quantities of categorical data. J. R. Statist. Soc. Ser. C (Appl. Statist.) 29(2), 119–127 (1980)
Keras OCR. https://github.com/faustomorales/keras-ocr. Accessed Mar 2022
Lacity, M., Willcocks, L.: What knowledge workers stand to gain from automation. Harv. Bus. Rev. 19, 1–6 (2015)
Leno, V., Armas-Cervantes, A., Dumas, M., La Rosa, M., Maggi, F.M.: Discovering process maps from event streams. In: ICSSP, pp. 86–95 (2018)
Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Identifying candidate routines for robotic process automation from unsegmented UI logs. In: ICPM, pp. 153–160 (2020)
Leno, V., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Automated discovery of data transformations for robotic process automation. arXiv preprint arXiv:2001.01007 (2020)
Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63, 1–14 (2020)
Leno, V., Polyvyanyy, A., La Rosa, M., Dumas, M., Maggi, F.M.: Action logger: enabling process mining for robotic process automation. In: CEUR Workshop Proceedings (2019)
Leshob, A., Bourgouin, A., Renard, L.: Towards a process analysis approach to adopt robotic process automation. In: ICEBE, pp. 46–53 (2018)
López-Carnicer, J.M., del Valle, C., Enríquez, J.G.: Towards an opensource logger for the analysis of RPA projects. In: BPM, pp. 176–184 (2020)
Majumder, B.P., Potti, N., Tata, S., Wendt, J.B., Zhao, Q., Najork, M.: Representation learning for information extraction from form-like documents. In: ACL, pp. 6495–6504 (2020)
Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., Poshyvanyk, D.: Machine learning-based prototyping of graphical user interfaces for mobile apps. IEEE Trans. Softw. Eng. 46(2), 196–221 (2018)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
Quinlan, J.R.: C4. 5: Programs For Machine Learning. Elsevier, Amsterdam (2014)
Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-030-40172-6
Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006). https://doi.org/10.1007/11841760_33
Willcocks, L., Lacity, M.: A new approach to automating services. MIT Sloan Manage. Rev. 58(1), 40–49 (2016)
Xu, Z., Baojie, X., Guoxin, W.: Canny edge detection based on open CV. In: 2017 13th ICEMI, pp. 53–56 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Martínez-Rojas, A., Jiménez-Ramírez, A., Enríquez, J.G., Reijers, H.A. (2022). Analyzing Variable Human Actions for Robotic Process Automation. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds) Business Process Management. BPM 2022. Lecture Notes in Computer Science, vol 13420. Springer, Cham. https://doi.org/10.1007/978-3-031-16103-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-16103-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16102-5
Online ISBN: 978-3-031-16103-2
eBook Packages: Computer ScienceComputer Science (R0)