Skip to main content

Condition-Based Monitoring of DC Motors Performed with Autoencoders

  • Conference paper
  • First Online:
Intelligent and Safe Computer Systems in Control and Diagnostics (DPS 2022)

Abstract

This paper describes a condition-based monitoring system estimating DC motor degradation with the use of an autoencoder. Two methods of training the autoencoder are evaluated, namely backpropagation and extreme learning machines. The root mean square (RMS) error in the reconstruction of successive fragments of the measured DC motor angular-frequency signal, which is fed to the input of autoencoder, is used to determine the health indicator (HI). A complete test bench is built using a Raspberry Pi system (i.e., motor driver controlling angular frequency) and Jetson Nano (i.e., embedded compute node to estimate motor degradation) to perform exploratory analysis of autoencoders for condition-based monitoring and comparison of several classical artificial intelligence algorithms. The experiments include detection of degradation of DC motor working in both constant and variable work points. Results indicate that the HI obtained with the autoencoders trained with the use of either training method is suitable for both work points. Next, an experiment with multiple autoencoders trained on each specific work point and running in parallel is reviewed. It is shown that, in this case, the minimum value of RMS error among all autoencoders should be taken as HI. Furthermore, it has been shown that there is a near-linear relationship between HI and the difference between measured and reconstructed angular-frequency waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: systems, purposes and approaches. arXiv:1912.07383 (2019)

  2. Michau, G., Hu, Y., Palmé, T., Fink, O.: Feature learning for fault detection in high-dimensional condition-monitoring signals. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 234(1), 104–115 (2020)

    Google Scholar 

  3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  4. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Sig. Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  5. Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 496–503 (2014). https://doi.org/10.1109/CVPRW.2014.79

  6. Zhai, J., Zhang, S., Chen, J., He, Q.: Autoencoder and its various variants. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 415–419 (2018). https://doi.org/10.1109/SMC.2018.00080

  7. LeCun, Y.: Deep learning & convolutional networks. In: 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–95 (2015). https://doi.org/10.1109/HOTCHIPS.2015.7477328

  8. Chen, Z., Li, W.: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Trans. Instrum. Meas. 66(7), 1693–1702 (2017)

    Article  Google Scholar 

  9. Michau, G.: From data to physics: signal processing for measurement head degradation detection. In: European Conference of the PHM Society 2018, Utrecht, Netherlands (2018)

    Google Scholar 

  10. Luo, B., Wang, H., Liu, H., Li, B., Peng, F.: Early fault detection of machine tools based on deep learning and dynamic identification. IEEE Trans. Ind. Electron. 66(1), 509–518 (2019)

    Article  Google Scholar 

  11. Wen, J., Gao, H.: Degradation assessment for the ball screw with variational autoencoder and kernel density estimation. Adv. Mech. Eng. 10(9), 1–12 (2018)

    Article  Google Scholar 

  12. Almotiri, J., Elleithy, K., Elleithy, A.: Comparison of autoencoder and principal component analysis followed by neural network for e-learning using handwritten recognition. In: 2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–5 (2017). https://doi.org/10.1109/LISAT.2017.8001963

  13. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, SNU Data Mining Centre 2(1), 1–18 (2015)

    Google Scholar 

  14. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  15. Strang, G.: Linear Algebra and Its Applications, 2nd edn., pp. 139–142. Academic Press Inc., Orlando (1980)

    MATH  Google Scholar 

  16. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: 2015 International Conference on Learning Representations (2015). arXiv:1412.6980v9

  17. Srivastava, D., Bhambhu, L.: Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 12(1), 1–7 (2010)

    Google Scholar 

  18. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(1), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Grandini, M., Bagli, E., Visani, G.: Metrics for multi-class classification: an overview. arXiv:2008.05756v1 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz P. Stefański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Włódarczak, K., Grzymkowski, Ł., Stefański, T.P. (2023). Condition-Based Monitoring of DC Motors Performed with Autoencoders. In: Kowalczuk, Z. (eds) Intelligent and Safe Computer Systems in Control and Diagnostics. DPS 2022. Lecture Notes in Networks and Systems, vol 545. Springer, Cham. https://doi.org/10.1007/978-3-031-16159-9_15

Download citation

Publish with us

Policies and ethics