Skip to main content

Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control

  • Conference paper
  • First Online:
Intelligent and Safe Computer Systems in Control and Diagnostics (DPS 2022)

Abstract

This paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks based on Gated Recurrent Unit cells. The study compares the performance of the proposed neural controller with other solutions, which are based on definitional fractional-order operators exploiting an infinite memory buffer and a classical adaptive PID controller. The proposed neural approximations of variable-order fractional operators applied to a PID-type controller provide a viable solution that can be successfully implemented on present-day digital control platforms. The research presented here focuses on the aspects of accuracy of approximators in simulated operating conditions within the thermal power control system of the challenging plant such as Small Modular Nuclear Reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapernick, J.R.: Dynamic modeling of a small modular reactor for control and monitoring (2015)

    Google Scholar 

  2. Kothari, K., Mehta, U.V., Prasad, R.: Fractional-order system modeling and its applications. J. Eng. Sci. Technol. Rev. 12(6), 1–10 (2019)

    Article  Google Scholar 

  3. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1), 57–98 (2002). https://doi.org/10.1023/A:1016586905654

    Article  MathSciNet  MATH  Google Scholar 

  4. Muresan, C.I., Birs, I.R., Dulf, E.H., Copot, D., Miclea, L.: A review of recent advances in fractional-order sensing and filtering techniques. Sensors 21(17), 5920 (2021)

    Article  Google Scholar 

  5. Patnaik, S., Hollkamp, J.P., Semperlotti, F.: Applications of variable-order fractional operators: a review. Proc. R. Soc. Math. Phys. Eng. Sci. 476(2234), 20190498 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, San Diego, Boston, New York, London, Tokyo, Toronto (1999)

    Google Scholar 

  7. Puchalski, B.: Neural approximators for variable-order fractional calculus operators (VO-FC). IEEE Access 10, 7989–8004 (2022)

    Article  Google Scholar 

  8. Puchalski, B., Duzinkiewicz, K., Rutkowski, T.: Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant. Arch. Control Sci. 25(4), 429–444 (2015)

    Article  MathSciNet  Google Scholar 

  9. Puchalski, B., Rutkowski, T.A.: Approximation of fractional order dynamic systems using Elman, GRU and LSTM neural networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020, Part I. LNCS (LNAI), vol. 12415, pp. 215–230. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61401-0_21

    Chapter  Google Scholar 

  10. Puchalski, B., Rutkowski, T.A., Duzinkiewicz, K.: Implementation of the Fopid algorithm in the PLC controller - PWR thermal power control case study. In: 2018 23rd International Conference on Methods Models in Automation Robotics (MMAR), pp. 229–234 (2018)

    Google Scholar 

  11. Puchalski, B., Rutkowski, T.A., Duzinkiewicz, K.: Fuzzy multi-regional fractional PID controller for pressurized water nuclear reactor. ISA Trans. 103, 86–102 (2020)

    Article  Google Scholar 

  12. Puchalski, B., Rutkowski, T.A., Tarnawski, J., Duzinkiewicz, K.: Programowo-sprzetowa platforma symulacyjna - Hardware In the Loop - zaawansowanego ukladu sterowania poziomem wody w pionowej wytwornicy pary elektrowni jadrowej. Aktualne problemy automatyki i robotyki pod red. K. Malinowski, J. Jözefczyk, J. Swiatek, Oficyna Wydawnicza EXIT, pp. 570–580 (2014)

    Google Scholar 

  13. Sabatier, J.: Fractional order models are doubly infinite dimensional models and thus of infinite memory: consequences on initialization and some solutions. Symmetry 13(6), 1099 (2021)

    Article  Google Scholar 

  14. Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)

    Article  Google Scholar 

  15. Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193(1), 185–192 (2011). https://doi.org/10.1140/epjst/e2011-01390-6

    Article  Google Scholar 

  16. Virtanen, P., et al.: SciPY 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)

    Article  Google Scholar 

  17. Xue, D.: Fractional-Order Control Systems: Fundamentals and Numerical Implementations. De Gruyter, June 2017

    Google Scholar 

Download references

Acknowledgements

Financial support of these studies from Gdańsk University of Technology by the DEC-33/2020/IDUB/I.3.3 grant under the ARGENTUM - ‘Excellence Initiative - Research University’ program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Puchalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puchalski, B., Rutkowski, T.A., Tarnawski, J., Karla, T. (2023). Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control. In: Kowalczuk, Z. (eds) Intelligent and Safe Computer Systems in Control and Diagnostics. DPS 2022. Lecture Notes in Networks and Systems, vol 545. Springer, Cham. https://doi.org/10.1007/978-3-031-16159-9_17

Download citation

Publish with us

Policies and ethics