Skip to main content

Application of Convolutional Neural Network for Gene Expression Data Classification

  • Conference paper
  • First Online:
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making (ISDMCI 2022)

Abstract

The results of research regarding the development of a gene expression data classification system based on a convolutional neural network are presented. Gene expression data of patients who were studied for lung cancer were used as experimental data. 156 patients were studied, of which 65 were identified as healthy and 91 patients were diagnosed with cancer. Each of the DNA microchips contained 54,675 genes. Data processing was carried out in two stages. In the first stage, 10,000 of the most informative genes in terms of statistical criteria and Shannon entropy were allocated. In the second stage, the classification of objects containing as attributes the expression of the allocated genes was performed by using a convolutional neural network. The obtained diagrams of the data classification accuracy during both the neural network model learning and validation indicate the absence of the network retraining since the character of changing the accuracy and loss values on trained and validated subsets during the network learning procedure implementation is the same within the allowed error. The analysis of the obtained results has shown, that the accuracy of the object’s classification on the test data subset reached 97%. Only one object of 39 was identified incorrectly. This fact indicates the high efficiency of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bioconductor. https://www.bioconductor.org/

  2. Gene expression omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

  3. Babichev, S., Škvor, J.: Technique of gene expression profiles extraction based on the complex use of clustering and classification methods. Diagnostics 10(8), 584 (2020). https://doi.org/10.3390/diagnostics10080584

    Article  Google Scholar 

  4. Babichev, S., Lytvynenko, V., Škvor, J., et al.: Information technology of gene expression profiles processing for purpose of gene regulatory networks reconstruction. In: Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, p. 8478452 (2018). https://doi.org/10.1109/DSMP.2018.8478452

  5. Brownlee, J.: How to choose loss functions when training deep learning neural networks. Deep learning performance (2019). https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

  6. Brownlee, J.: Loss and loss functions for training deep learning neural networks. Deep learning performance (2019). https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/

  7. Busaleh, M., Hussain, M., Aboalsamh, H.: Breast mass classification using diverse contextual information and convolutional neural network. Biosensors 11(11), 419 (2021). https://doi.org/10.3390/bios11110419

    Article  Google Scholar 

  8. Cao, X., Pan, J.S., Wang, Z., et al.: Application of generated mask method based on mask R-CNN in classification and detection of melanoma. Comput. Methods Programs Biomed. 207, 106174 (2021). https://doi.org/10.1016/j.cmpb.2021.106174

    Article  Google Scholar 

  9. Chuang, Y.H., Huang, S.H., Hung, T.M., et al.: Convolutional neural network for human cancer types prediction by integrating protein interaction networks and omics data. Sci. Rep. 11(1), 20691 (2021). https://doi.org/10.1038/s41598-021-98814-y

    Article  Google Scholar 

  10. Hausser, J., Strimmer, K.: Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res. 10, 1469–1484 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Khan, S., Rahmani, H., Ali Shakh, S., Bennamoun, M.: A Guide to Convolutional Neural Networks for Computer Vision, p. 207. Morgan & Claypool Publishers, New England (2018)

    Google Scholar 

  12. Li, J., Sun, W., Feng, X., et al.: A dense connection encoding-decoding convolutional neural network structure for semantic segmentation of thymoma. Neurocomputing 451, 1–11 (2021). https://doi.org/10.1016/j.neucom.2021.04.023

    Article  Google Scholar 

  13. Lytvynenko, V., Savina, N., Krejci, J., Voronenko, M., Yakobchuk, M., Kryvoruchko, O.: Bayesian networks’ development based on noisy-max nodes for modeling investment processes in transport. In: CEUR Workshop Proceedings, vol. 2386 (2019)

    Google Scholar 

  14. Marasanov, V.V., Sharko, A.V., Sharko, A.A.: Energy spectrum of acoustic emission signals in coupled continuous media. J. Nano Electron. Phys. 11(3), 03028 (2019). https://doi.org/10.21272/jnep.11(3).03028

  15. Morandat, F., Hill, B., Osvald, L., Vitek, J.: Evaluating the design of the R language. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 104–131. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31057-7_6

    Chapter  Google Scholar 

  16. Mostavi, M., Chiu, Y.C., Huang, Y., Chen, Y.: Convolutional neural network models for cancer type prediction based on gene expression. BMC Med. Genom. 13(5), 44 (2020). https://doi.org/10.1186/s12920-020-0677-2

    Article  Google Scholar 

  17. Philipsen, S., Hou, J., Aerts, J., et al.: Gene expression-based on classification of non-small cell lung carcinomas and survival prediction. PLoS One 5(4), e10312 (2010)

    Article  Google Scholar 

  18. Ramires, R., Chiu, Y., Horerra, A., et al.: Classification of cancer types using graph convolutional neural networks. Front. Phys. 8, 203 (2020). https://doi.org/10.3389/fphy.2020.00203

    Article  Google Scholar 

  19. Sharko, M., Shpak, N., Gonchar, O., Vorobyova, K., Lepokhina, O., Burenko, J.: Methodological basis of causal forecasting of the economic systems development management processes under the uncertainty. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds.) ISDMCI 2020. AISC, vol. 1246, pp. 423–436. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54215-3_27

    Chapter  Google Scholar 

  20. Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings (2015)

    Google Scholar 

  21. Yang, Y., Cai, J., Yang, H., Zhao, X.: Density clustering with divergence distance and automatic center selection. Inf. Sci. 596, 414–438 (2022). https://doi.org/10.1016/j.ins.2022.03.027

    Article  Google Scholar 

  22. Yu, Z., Yan, Y., Deng, F., Zhang, F., Li, Z.: An efficient density peak cluster algorithm for improving policy evaluation performance. Sci. Rep. 12(1), 5000 (2022). https://doi.org/10.1038/s41598-022-08637-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Babichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasinska-Damri, L., Babichev, S., Durnyak, B., Goncharenko, T. (2023). Application of Convolutional Neural Network for Gene Expression Data Classification. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making. ISDMCI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-16203-9_1

Download citation

Publish with us

Policies and ethics