Skip to main content

Ecology Objects Recognition by Optimized Inverse Filtration of Textured Background

  • Conference paper
  • First Online:
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making (ISDMCI 2022)

Abstract

Recognition and elimination of textured background is the first step in computer monitoring of environmental objects by intelligence systems. The approach to develop filters of textured images features is offered. The problem of texture recognition is formulated as inverse problem to modeling of texture dynamic. The modeling is based on the approximation of the texture surface by sum of principal components in the manner of eigen harmonics (EH) which frequencies are related with the texture structure. The approach has some advantages, since the EH have simple form and shift invariance is an important quality in the case of large landscapes modeling and filtering. The texture is considering as a response of a linear dynamic system to an excitation signal of a known shape. The dynamic system is characterized by a transient response. The inverse transient response allows to restore the excitation signal and, if it differs from the original within the specified limits, it’s a sign of texture recognition. The EH approximation is using to find transient response and its inverse form, to optimize it in accordance with criterion of minimal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ade, F.: Characterization of texture by “eigenfilter". Signal Process. 5, 451–457 (1983). https://doi.org/10.5244/C.18.66

    Article  Google Scholar 

  2. Bunyak, Y.A.: Harmonic analysis of wave fields. J. Commun. Technol. Electron. 43(3), 239–243 (1998)

    Google Scholar 

  3. Celeux, G., Forbes, F., Peyrard, N.: EM procedures using meanfield-like approximations for Markov model-based image segmentation. Pattern Recogn. 36(1), 131–144 (2003). https://doi.org/10.1016/S0031-3203(02)00027-4

    Article  MATH  Google Scholar 

  4. Xiong, C., Xu, J., Zou, J., Qi, D.: Texture classification based on EMD and FFT. J. Zhejiang University-SCIENCE A 7(9), 1516–1521 (2006). https://doi.org/10.1631/jzus.2006.A1516

    Article  MATH  Google Scholar 

  5. Charalampidis, D.: Texture synthesis: textons revisited. In: IEEE Trans. Image Process. 15(3), 777–787 (2006). https://doi.org/10.1109/tip.2005.860604

  6. Clarenz, U., Diewald, U., M., R.: Processing textured surfaces via anisotropic geometric diffusion. IEEE Trans. Image Process. 13(2), 248–261 (2004). https://doi.org/10.1109/TIP.2003.819863

  7. Elliot, D.F., Rao, R.: Fast Transforms: Algorithms. Analysis and Applications. Academic Press, New York (1983)

    Google Scholar 

  8. Fu, Y., Huang, T.S.: Image classification using correlation tensor analysis. IEEE Trans. Image Process. 17(2), 226–234 (2008). https://doi.org/10.1109/tip.2007.914203

    Article  MathSciNet  Google Scholar 

  9. Fujita, K., Nayar, S.K.: Recognition of dynamic textures using impulse responses of state variables. Pattern Recogn. 31, 1496–1509 (2003)

    Google Scholar 

  10. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn. 43(3), 706–719 (2010). https://doi.org/10.1016/j.patcog.2009.08.017

    Article  MATH  Google Scholar 

  11. Hua, Y.: Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. SP 40(9), 2267–2280 (1992). https://doi.org/10.1109/78.157226

    Article  MATH  Google Scholar 

  12. Huang, K., Aviyente, S.: Information-theoretic wavelet packet subband selection for texture classification. Signal Process. 86, 1410–1420 (2006). https://doi.org/10.1016/j.sigpro.2005.07.032

  13. Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of signals. J. Appl. Comput. Harmon. Anal. 10(3), 234–253 (2001). https://doi.org/10.1006/acha.2000.0343

    Article  MathSciNet  MATH  Google Scholar 

  14. Kvyetnyy, R., Bunyak, Y., Sofina, O., Romaniuk, R.S., Tuleshova, A.: Blur recognition using second fundamental form of image surface. In: SPIE, vol. 9816. id. 98161A 9 (2015). https://doi.org/10.1117/12.2229103

  15. Kvyetnyy, R., Sofina, O., Orlyk, P., Wójcik, W., Orazalieva, S.: Improving the quality perception of digital images using modified method of the eye aberration correction. In: SPIE - The International Society for Optical Engineering, vol. 10031, p. 1003113 (2016). https://doi.org/10.1117/12.2249164

  16. Lazebnik, S., Schmid, C., Ponce, J.: Affine-invariant local descriptors and neighborhood statistics for texture recognition. In: ICCV, vol. 6, pp. 221–229 (2003). https://doi.org/10.1109/ICCV.2003.1238409

  17. Li, H., Liu, G., Zhang, Z.: A new texture generation method based on pseudo-DCT coefficients. IEEE Trans. on Image Processing 15(5), 1300–1312 (2006). https://doi.org/10.1109/TIP.2005.863970

    Article  Google Scholar 

  18. Liu, G., Lin, Z., Yong, Y.: Radon representation-based feature descriptor for texture classification. IEEE Trans. Image Process. 18, 921–928 (2009)

    Google Scholar 

  19. Marple, S.L.: Digital Spectral Analysis with Applications. Prentice-Hall Inc, Englewood Cliffs, New Jersey (1987)

    Google Scholar 

  20. Mehta, R., Egiazarian, K.: Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn. Lett. 71, 16–22 (2016). https://doi.org/10.1016/j.patrec.2015.11.019

    Article  Google Scholar 

  21. Nguyen, T.P., Vu, N.S., Manzanera, A.: Statistical binary patterns for rotational invariant texture classification. Neurocomputing 173, 1565–1577 (2016)

    Article  Google Scholar 

  22. Nunes, J.C., Niang, O., Bouaoune, Y., Delechelle, E., Bunel, P.: Bidimensional empirical mode decomposition modified for texture analysis. In: 13th Scandinavian Conference, SCIA, pp. 171–177 (2003). https://doi.org/10.5555/1763974.1764003

  23. Palm, C., Lehmann, T.V.: Classification of color textures by Gabor filtering. Graph. Vision 11(2), 195–219 (2002). https://doi.org/10.5555/tip.762282.762288

    Article  Google Scholar 

  24. Pattichis, M.S., Bovik, A.C.: Analyzing Image Structure by Multidimensional Frequency Modulation. In: IEEE Trans. on Pattern Analysis and Machine Intelligence. vol. 5, pp. 1–36 (2006). https://doi.org/10.1109/TPAMI.2007.1051

  25. Radke, R. J. anb Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005). https://doi.org/10.1109/TIP.2004.838698

  26. Randen, T., Husoy, J.H.: Filtering for texture classification. A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1998). https://doi.org/10.1109/34.761261

  27. Rezaei, M., Fekri-Ershad, S.: Texture classification approach based on combination of random threshold vector technique and co-occurrence matrixes. In: ICCSNT, vol. 4, pp. 2303–2306 (2011). https://doi.org/10.1109/ICCSNT.2011.6182434

  28. Sayadi, M., Sakrani, S., Fnaiech, F., Cheriet, M.: Gray-level texture characterization based on a new adaptive nonlinear auto-regressive filter. Electron. Lett. Comput. Vis. Image Anal. 7(1), 40–53 (2008). https://doi.org/10.5565/rev/elcvia.158

    Article  Google Scholar 

  29. Soatto, S., Doretto, G., Wu, Y.N.: Dynamic textures. Int. J. Comput. Vision 51, 91–109 (2003). https://doi.org/10.1023/A:1021669406132

    Article  MATH  Google Scholar 

  30. Vyas, V.S., Rege, P.: Automated texture analysis with gabor filter. GVIP J. 6(1), 35–41 (2006). https://doi.org/10.1.1.94.2430

  31. Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and principal component analysis. A Practical Approach to Microarray Data Analysis. Norwell, MA (2003).https://doi.org/10.1007/0-306-47815-3_5

  32. Wiener, N.: Time Series. MIT Press, Cambridge (1964)

    Google Scholar 

  33. Xie, X.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7(3), 1–22 (2008)

    Google Scholar 

  34. Yang, Z., Yang, L.: Decomposition based on classical empirical mode decomposition and radon transform. In: IMECS 2009, pp. 18–20 (2009)

    Google Scholar 

  35. Yarman, C.E., Yaz, B.: An Inversion Method for the Exponential Radon Transform Based on the Harmonic Analysis of the Euclidean Motion Group. In: SPIE 2006. vol. 1, pp. 6142–61424A (2006). https://doi.org/10.1117/12.647807

  36. Zhang X., W.X.: Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans. Image Process. 16(7), 887–896 (2008). https://doi.org/10.1109/TIP.2008.924279

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Sofina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kvyetnyy, R., Sofina, O., Bunyak, Y. (2023). Ecology Objects Recognition by Optimized Inverse Filtration of Textured Background. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making. ISDMCI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-16203-9_11

Download citation

Publish with us

Policies and ethics