Skip to main content

Computational Intelligence in Medicine

  • Conference paper
  • First Online:
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making (ISDMCI 2022)

Abstract

Two paradigms have historically formed in artificial intelligence: neurocybernetics and black box cybernetics. The cybernetics of the “black box” is based on a logical approach. The rapid development of modern medicine is due to the use of technical diagnostic tools, and the use of new information technologies. Technical means of diagnosing allow you to visualize the processes of diagnosing. Intelligent information technologies use the methods and tools of artificial intelligence and can speed up the diagnosis and improve its accuracy. The authors of the work have been working on biomedical images for many years, building CAD systems with elements of artificial intelligence. Biomedical (cytological, histological, and immunohistochemical) images are used for diagnosis in oncology. The problems of classification, generation, segmentation, and clustering of biomedical images are solved in the work. For these purposes, the following means of computational intelligence were used: CNN, GAN, and U-net. CNN is used in the paper to classify images. Several models for the classification of biomedical images are proposed and a comparative analysis with existing analogs is given. The accuracy of classification for cytological images was 86%, for histological was 84%. The authors analyzed the architectures of convolutional neural networks of the U-net type for automatic segmentation of immunohistochemical images. A modified neural network architecture for the segmentation of immunohistochemical images has been developed. Computer experiments were performed on different numbers of stages and iterations. ROC curves are built to assess the quality of segmentation of known and modified network architectures such as U-net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, R., Durkee, M.: Application and generalizability of U-Net segmentation of immune cells in inflamed tissue. In: Tomaszewski, J.E., Ward, A.D. (eds.) Medical Imaging 2021: Digital Pathology. SPIE, Online Only, United Stat, p. 40 (2021)

    Google Scholar 

  2. Al-Tam, R., Narangale, S.: Breast cancer detection and diagnosis using machine learning: a survey. J. Sci. Res. 65(5), 265–285 (2021)

    Google Scholar 

  3. de Almeida Thomaz, V., Sierra-Franco, C., Raposo, A.: Training data enhancements for improving colonic polyp detection using deep convolutional neural networks. Artif. Intell. Med. 111, 101988 (2021). https://doi.org/10.1016/j.artmed.2020.101988

  4. Alom, M., Yakopcic, C., Taha, T.: Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net), pp. 228–233 (2018)

    Google Scholar 

  5. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)

    Google Scholar 

  6. Bai, J., Posner, R., Wang, T.: Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: a review. Med. Image Anal. 71, 102049 (2022). https://doi.org/10.1016/j.media.2021.102049

  7. Benny, S., Varma, S.: Semantic segmentation in immunohistochemistry breast cancer image using deep learning. In: 2021 International Conference on Advances in Computing, Communication, and Control (ICAC3), pp. 1–2. IEEE, Mumbai, India (2021)

    Google Scholar 

  8. Berezsky, O., Batko, Y., Berezka, K., Verbovyi, S.: Methods, algorithms and software for processing biomedical images. Ekonomichna dumka, p. 330 (2017)

    Google Scholar 

  9. Berezsky, O., Liashchynskyi, P.: Comparison of generative adversarial networks architectures for biomedical images synthesis. AAIT 4, 250–260 (2021). https://doi.org/10.15276/aait.03.2021.4

  10. Berezsky, O., Pitsun, O. Derish, B.: Adaptive immunohistochemical image pre-processing method. In: International Conference on Advanced Computer Information Technologies (ACIT), pp. 820–823. IEEE, Deggendorf, Germany (2020)

    Google Scholar 

  11. Berezsky, O., Pitsun, O., Batryn, N.: Modern automated microscopy systems in oncology. In: Proceedings of the 1st International Workshop on Informatics and Data-Driven Medicine, Lviv, Ukraine, pp. 311–325 (2018)

    Google Scholar 

  12. Berezsky, O., Pitsun, O., Datsko, T.: Specified diagnosis of breast cancer on the basis of immunogistochemical images analysis. In: Proceedings of the 3rd International Conference on Informatics and Data-Driven Medicine, CEUR, Växjö, Sweden, pp. 129–135 (2020)

    Google Scholar 

  13. Berezsky, O., Pitsun, O., Derysh, B.: Automatic segmentation of immunohistochemical images based on U-Net architectures. In: CEUR, pp. 22–33 (2021). http://ceur-ws.org/Vol-3038

  14. Berezsky, O., Pitsun, O., Dolynyuk, T.: Cytological image classification using data reduction. In: Proceedings of the 2nd International Workshop on Informatics and Data-Driven Medicine (IDDM 2019), CEUR, Lviv, Ukraine, pp. 16–29 (2019)

    Google Scholar 

  15. Berezsky, O., Pitsun, O., Dolynyuk, T.: Cytological images clustering of breast pathologies. In: PIEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), pp. 62–65. IEEE, Zbarazh, Ukraine (2020)

    Google Scholar 

  16. IARC, I.: Marks Breast Cancer Awareness Month 2021. http://www.iarc.who.int/news-events/iarc-marks-breast-cancer-awareness-month-2021 (2022)

  17. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis (2019)

    Google Scholar 

  18. Das, A., Nair, M.: Batch mode active learning on the Riemannian manifold for automated scoring of nuclear pleomorphism in breast cancer. Artif. Intell. Med. 103, 101805 (2018). https://doi.org/10.1016/j.artmed.2020.101805

  19. Filipczuk, P., Kowal, M., Obuchowicz, A.: Breast fibroadenoma automatic detection using k-means based hybrid segmentation method. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1623–1626. IEEE, Barcelona, Spain (2012)

    Google Scholar 

  20. Gandomkar, Z., Brennan, P., Mello-Thoms, C.: MuDeRN: multi-category classification of breast histopathological image using deep residual networks. Artif. Intell. Med. 88, 14–24 (2018). https://doi.org/10.1016/j.artmed.2018.04.005

    Article  Google Scholar 

  21. Ghasemi, M., Kelarestaghi, M., Eshghi, F.: FDSR: a new fuzzy discriminative sparse representation method for medical image classification. Artif. Intell. Med. 106, 101876 (2020). https://doi.org/10.1016/j.artmed.2020.101876

  22. Goodfellow, I., Pouget-Abadie, J., Mirza, M.: Generative adversarial networks (2014)

    Google Scholar 

  23. Heusel, M.: GANs trained by a two time-scale update rule. http://arxiv.org/abs/1706.08500 (2017)

  24. Hlavcheva, D., Yaloveha, V., Podorozhniak, A.: A comparison of classifiers applied to the problem of biopsy images analysis. AIS 4, 12–16 (2022). https://doi.org/10.20998/2522-9052.2020.2.03

  25. Jain, P., Kulsum, S.: Analysis of deep learning algorithms for breast cancer diagnosis on WBC. Int. J. Eng. Res. Technol. 8(15) (2020)

    Google Scholar 

  26. Jin, D., Vasilakos, A.: Neural networks for computer-aided diagnosis in medicine: a review. Neurocomputing 216, 700–708 (2016). https://doi.org/10.1016/j.neucom.2016.08.039

    Article  Google Scholar 

  27. Kang, M., Park, J.: ContraGAN: Contrastive learning for conditional image generation (2021)

    Google Scholar 

  28. Kazeminia, S., Baur, C., Kuijper, A.: GANs for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)

    Google Scholar 

  29. Kumar, Y., Gupta, S., Singla, R., Hu, Y.-C.: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Arch. Comput. Methods Eng. 29(4), 2043–2070 (2021). https://doi.org/10.1007/s11831-021-09648-w

  30. Latif, M., Faye, I.: Automated tibiofemoral joint segmentation based on deeply supervised 2D-3D ensemble U-Net: Data from the osteoarthritis initiative. Artif. Intell. Med. 122, 102213 (2021). https://doi.org/10.1016/j.artmed.2021.102213

  31. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. arXiv:1411.4038 (2015)

  32. de Matos, J., Ataky, S., de Souza Britto, A.: Machine learning methods for histopathological image analysis: a review. Electronics 562(10), 700–708 (2021). https://doi.org/10.3390/electronics10050562

    Article  Google Scholar 

  33. Menze, B., Jakab, A., Bauer, S.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  34. Mitra, S., Das, N., Dey, S.: Cytology image analysis techniques towards automation: systematically revisited. arXiv preprint arXiv:2003.07529 (2020)

  35. Nassif, A., Talib, M.: Breast cancer detection using artificial intelligence techniques: a systematic literature review. Artif. Intell. Med. 127, 102276 (2022). https://doi.org/10.1016/j.artmed.2022.102276

  36. Nitefor, L.: Clinical features of immunogistochemical diagnosis of sarcoma and philoid tumors of the breast. APP (2017). https://doi.org/10.11603/24116-4944.2017.2.8036

  37. Olatunji, S., Alotaibi, S., Almutairi, E.: Early diagnosis of thyroid cancer diseases using computational intelligence techniques: a case study of a Saudi Arabian dataset. Comput. Biol. Med. 131, 104267 (2021). https://doi.org/10.1016/j.compbiomed.2021.104267

  38. de Oliveira Silva, L., Barros, A., Lopes, M.: Detecting masses in dense breast using independent component analysis. Artif. Intell. Med. 80, 29–38 (2017)

    Article  Google Scholar 

  39. Peng, Y., Yao, B., Jiang, J.: Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis. Artif. Intell. Med. 37(1), 43–53 (2006). https://doi.org/10.1016/j.artmed.2005.09.001

    Article  Google Scholar 

  40. Pham, B., Gaonkar, B., Whitehead, W.: Cell counting and segmentation of immunohistochemical images in the spinal cord: comparing deep learning and traditional approaches. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 842–845. IEEE, Honolulu, HI (2018)

    Google Scholar 

  41. Pouliakis, A., Karakitsou, E., Margari, N.: Artificial neural networks as decision support tools in cytopathology: past, present, and future. Biomed. Eng. Comput. Biol. (2016). https://doi.org/10.4137/BECB.S31601

    Article  Google Scholar 

  42. Prasad, R., Udupa, K.: BCHisto-Net: breast histopathological image classification by global and local feature aggregation. Artif. Intell. Med. 121, 102191 (2021). https://doi.org/10.1016/j.artmed.2021.102191

  43. Ramos-Vara, J.: Technical aspects of immunohistochemistry. Vet. Pathol. 42, 405–426 (2005). https://doi.org/10.1354/vp.42-4-405

    Article  Google Scholar 

  44. Salimans, T.: Improved techniques for training GAN. Improved techniques for training GAN. http://arxiv.org/abs/1606.03498 (2021)

  45. Xiong, H., Sharan, R.: Weak label based Bayesian U-Net for optic disc segmentation in fundus images. Artif. Intell. Med. 126, 102261 (2022). https://doi.org/10.1016/j.artmed.2022.102261

  46. Yager, J., Davidson, N.: Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 354, 270–282 (2006). https://doi.org/10.1056/NEJMra050776

    Article  Google Scholar 

  47. Zhang, C., Gu, J.: AI in spotting high-risk characteristics of medical imaging and molecular pathology. Precis. Clin. Med. 4, 271–286 (2021). https://doi.org/10.1093/pcmedi/pbab026

    Article  Google Scholar 

  48. Zhang, H., Goodfellow, I., Metaxas, D.: Self-attention generative adversarial networks (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Pitsun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berezsky, O., Pitsun, O., Liashchynskyi, P., Derysh, B., Batryn, N. (2023). Computational Intelligence in Medicine. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making. ISDMCI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-16203-9_28

Download citation

Publish with us

Policies and ethics