Skip to main content

Investigation of the Impact of Primary Data Processing on the Results of Neural Network Training for Satellite Imagery Recognition

  • Conference paper
  • First Online:
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making (ISDMCI 2022)

Abstract

Research and recognition of high-resolution multi-spectral satellite images is a complex and vital task in modern science. Of particular difficulty is the recognition of satellite images without additional channels, based only on RGB, in addition to very homogeneous classes with similar primary features. This article discusses the creation and configuration of a neural network architecture based on ConvNet with subsequent training. High-resolution satellite images from the Landsat 8-9 OLI/TIRS C2 L2 without additional channels to create datasets necessary for the neural network to complete the task. The paper presents four experiments on ranking the input data of the neural network to identify their influence on the final result of recognition, regardless of the settings and architecture of the neural network itself. Pre-processing of the input data was based on annotating the images of each class and then creating masks for them, namely for the classes: water, trees, and fields. In experiments with prepared validation input data, the increase in class recognition was up to 54.44%. Conclusions have about each experiment and the influence of input data on the result of satellite image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

  2. Ali, N., Zafar, B., Iqbal, M.K., et al.: Modeling global geometric spatial information for rotation invariant classification of satellite images. PLoS ONE 14(7), e0219833 (2019)

    Article  Google Scholar 

  3. Arcidiacono, C., Porto, S.: Classification of crop-shelter coverage by RGB aerial images: a compendium of experiences and findings. J. Agric. Eng. 41(3), 1–11 (2010)

    Article  Google Scholar 

  4. Hirayama, H., Sharma, R., Tomita, M., Hara, K.: Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. Int. J. Remote Sens. 40(7), 2542–2557 (2019). https://doi.org/10.1080/01431161.2018.1528400

    Article  Google Scholar 

  5. Hnatushenko, V., Zhernovyi, V.: Method of improving instance segmentation for very high resolution remote sensing imagery using deep learning. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds.) DSMP 2020. CCIS, vol. 1158, pp. 323–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61656-4_21

    Chapter  Google Scholar 

  6. Hordiiuk, D.M., Hnatushenko, V.V.: Neural network and local Laplace filter methods applied to very high resolution remote sensing imagery in urban damage detection. In: Proceedings of 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (2017). https://doi.org/10.1109/ysf.2017.8126648

  7. Hosseini, H., Xiao, B., Jaiswal, M., Poovendran, R.: On the limitation of convolutional neural networks in recognizing negative images. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 352–358. IEEE (2017). https://doi.org/10.1109/ICMLA.2017.0-136

  8. Hu, K., Zhang, Z., Niu, X., et al.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018). https://doi.org/10.1016/j.neucom.2018.05.011

    Article  Google Scholar 

  9. Ji, Z., Telgarsky, M.: Directional convergence and alignment in deep learning. Adv. Neural. Inf. Process. Syst. 33, 17176–17186 (2020)

    Google Scholar 

  10. Julio, O., Soares, L., Costa, E., Bampi, S.: Energy-efficient gaussian filter for image processing using approximate adder circuits. In: 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 450–453. IEEE (2015). https://doi.org/10.1109/ICECS.2015.7440345

  11. Ketkar, N.: Stochastic gradient descent. In: Deep Learning with Python, pp. 111–130. Apress, Berkeley (2017). https://doi.org/10.1007/978-1-4842-2766-4_8

    Chapter  Google Scholar 

  12. Kohler, J., Daneshmand, H., Lucchi, A., et al.: Towards a theoretical understanding of batch normalization. Stat 1050, 27 (2018)

    Google Scholar 

  13. Mozgovoy, D., Hnatushenko, V., Vasyliev, V.: Accuracy evaluation of automated object recognition using multispectral aerial images and neural network. In: Proceedings of the SPIE 10806, Tenth International Conference on Digital Image Processing (2018). https://doi.org/10.1117/12.2502905

  14. Mozgovoy, D.K., Hnatushenko, V.V., Vasyliev, V.V.: Automated recognition of vegetation and water bodies on the territory of megacities in satellite images of visible and IR bands. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-3, 167–172 (2018). https://doi.org/10.5194/isprs-annals-IV-3-167-2018

  15. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016). https://doi.org/10.48550/arXiv.1606.02147

  16. Riad, R., Teboul, O., Grangier, D., Zeghidour, N.: Learning strides in convolutional neural networks. arXiv preprint arXiv:2202.01653 (2022). https://doi.org/10.48550/arXiv.2202.01653

  17. Sader, S., Bertrand, M., Wilson, E.H.: Satellite change detection of forest harvest patterns on an industrial forest landscape. Forest Sci. 49(3), 341–353 (2003)

    Google Scholar 

  18. Schmidt-Hieber, J.: Nonparametric regression using deep neural networks with ReLU activation function. Ann. Stat. 48(4), 1875–1897 (2020). https://doi.org/10.1214/19-AOS1875

    Article  MathSciNet  MATH  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arxiv:1409.1556, September 2014 (2020). https://doi.org/10.48550/arXiv.1409.1556

  20. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 497–504 (2017). https://doi.org/10.1145/3071178.3071229

  21. Tokarev, K.: Intelligent system for agricultural crops defective areas monitoring and visualization based on spectral analysis of satellite high-resolution images. In: IOP Conference Series: Earth and Environmental Science, vol. 786, p. 012039. IOP Publishing (2021)

    Google Scholar 

  22. Wu, F., Wang, Z., Zhang, Z., et al.: Weakly semi-supervised deep learning for multi-label image annotation. IEEE Trans. Big Data 1(3), 109–122 (2015)

    Article  Google Scholar 

  23. Xu, J.L., Gowen, A.: Spatial-spectral analysis method using texture features combined with PCA for information extraction in hyperspectral images. J. Chemom. 34(2), e3132 (2020). https://doi.org/10.1002/cem.3132

    Article  Google Scholar 

  24. Yu, Z., Li, T., Luo, G., Fujita, H., Yu, N., Pan, Y.: Convolutional networks with cross-layer neurons for image recognition. Inf. Sci. 433, 241–254 (2018). https://doi.org/10.1016/j.ins.2017.12.045

    Article  MathSciNet  Google Scholar 

  25. Zhang, X., Wang, H., Hong, M., et al.: Robust image corner detection based on scale evolution difference of planar curves. Pattern Recogn. Lett. 30(4), 449–455 (2009). https://doi.org/10.1016/j.patrec.2008.11.002

    Article  Google Scholar 

  26. Zhang, Y., Zhao, D., Zhang, J., Xiong, R., Gao, W.: Interpolation-dependent image downsampling. IEEE Trans. Image Process. 20(11), 3291–3296 (2011). https://doi.org/10.1109/TIP.2011.2158226

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Soldatenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soldatenko, D., Hnatushenko, V. (2023). Investigation of the Impact of Primary Data Processing on the Results of Neural Network Training for Satellite Imagery Recognition. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making. ISDMCI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-16203-9_30

Download citation

Publish with us

Policies and ethics