Skip to main content

Deep Learning Technology for Automatic Burned Area Extraction Using Satellite High Spatial Resolution Images

  • Conference paper
  • First Online:
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making (ISDMCI 2022)

Abstract

Today, there is an acute issue of prompt provision of up-to-date and most complete spatial information for making optimal management decisions in the forestry industry. The most effective tool for solving many problems in this area is using satellite data. The advent of optical satellites of high spatial resolution (Sentinel-2, Worldview-2,3) makes it possible to use modern methods of operational mapping to solve forestry problems (in particular, identifying burnt areas after a fire). As the monitoring area increases, and the number of images increases, the need for automatic data processing. Thereof to improve the accuracy of recognition of such objects in images is to use deep learning algorithms based on convolutional neural networks. This paper presents a description of the “traditional” methods for burned area detection (vegetation indices, multi-channel, and single-channel change detection, etc.), convolutional neural networks, and their main principles, and limitations. We also present a new method for operational mapping of a burned area using convolutional neural networks and provide an increase in the accuracy of forest fire recognition by more than two times in comparison with traditional methods based on raster arithmetic. The accuracy, estimated by the F-measure, is 0.80 for Haciveliler, 0.93 - Mugla, and 0.95 - Kavaklidere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate, N., Elfadaly, A., Masini, N., Lasaponara, R.: Multitemporal 2016–2018 Sentinel-2 data enhancement for landscape archaeology: the case study of the Foggia Province, Southern Italy. Remote Sensing 12(8), 1309 (2020). https://doi.org/10.3390/rs12081309

    Article  Google Scholar 

  2. Al-hasn, R., Almuhammad, R.: Burned area determination using Sentinel-2 satellite images and the impact of fire on the availability of soil nutrients in Syria. J. Forest Sci. 68, 96-106 (2022). https://doi.org/10.17221/122/2021-JFS

  3. Almeida, O., et al.: Validation of normalized difference infrared index (NDII) to estimate soil moisture in traditional olive cultivation systems, Tunisia. In: EGU General Assembly Conference Abstracts, p. 14209. EGU General Assembly Conference Abstracts (2019)

    Google Scholar 

  4. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(53), 1–74 (2021). https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  5. Asifullah, K., Anabia, S., Umme, Z., Aqsa, S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53, 1–62 (2020)

    Google Scholar 

  6. Dimitrios, G., Anastasios, A., Sotirios, K.: Land cover of Greece, 2010: a semi-automated classification using Random Forests. J. Maps 12, 1055–1062 (2016). https://doi.org/10.1080/17445647.2015.1123656

    Article  Google Scholar 

  7. Ding, C., et al.: Boosting few-shot hyperspectral image classification using pseudo-label learning. Remote Sens. 13(17), 3539 (2021). https://doi.org/10.3390/rs13173539

    Article  Google Scholar 

  8. Fragou, S., Kalogeropoulos, K., Stathopoulos, N., Louka, P., Srivastava, P., Karpouzas, E.: Quantifying land cover changes in a mediterranean environment using landsat TM and support vector machines. Forests 11(7), 750 (2020). https://doi.org/10.3390/f11070750

    Article  Google Scholar 

  9. Gao, H., Hrachowitz, M., Sriwongsitanon, N., Fenicia, F., Gharari, S., Savenije, H.: Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region. Delft University of Technology (2016). https://doi.org/10.1002/2016wr019574

  10. Garkusha, I., Hnatushenko, V., Vasyliev, V.: Research of influence of atmosphere and humidity on the data of radar imaging by Sentinel-1. In: 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), pp. 405–408 (2017). https://doi.org/10.1109/ELNANO.2017.7939787

  11. Giorgos, M., Ioannsi, M., Irene, C.: Evaluating and comparing Sentinel 2a and Landsat-8 operational land imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIsci. Remote Sens. 55, 1–18 (2018). https://doi.org/10.1080/15481603.2017.1354803

    Article  Google Scholar 

  12. Goswami, A., et al.: Change detection in remote sensing image data comparing algebraic and Machine Learning methods. Electronics 11(3), 431 (2022). https://doi.org/10.3390/electronics11030431

    Article  Google Scholar 

  13. Hammadi, A., Ahmed, T., Hichem, T., Wahbi, J.: Evaluation and comparsion of Sentinel-2 MSI, Landsat 8 OLI, and EFFis data for forest fires mapping. illustrations from the summer 2017 fires in Tunisia. In: Geocarto International, pp. 1–20 (2021). https://doi.org/10.1080/10106049.2021.1980118

  14. Hethcoat, M., Edwards, D., Carreiras, J., Bryant, R., França, F., Quegan, S.: A machine learning approach to map tropical selective logging. Remote Sens. Environ. 221, 569–582 (2019). https://doi.org/10.1016/j.rse.2018.11.044

    Article  Google Scholar 

  15. Hnatushenko, V., Hnatushenko, V., Mozgovyi, D., Vasyliev, V., Kavats, O.: Satellite monitoring of consequences of illegal extraction of Amber in Ukraine. Sci. Bull. Natl. Min. Univ. State High. Educ. Inst. “Natl. Min. Univ.” 2(158), 99–105 (2017)

    Google Scholar 

  16. Hordiiuk, D., Hnatushenko, V.: Neural network and local laplace filter methods applied to very high resolution remote sensing imagery in urban damage detection. In: 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), pp. 1984–1988 (2017). https://doi.org/10.1109/ysf.2017.8126648

  17. Huo, L., Boschetti, L., Sparks, A.: Object-based classification of forest disturbance types in the Conterminous United States. Remote Sens. 11(5), 477 (2019). https://doi.org/10.3390/rs11050477

    Article  Google Scholar 

  18. Jérôme, L., et al.: Sentinel-2 sen2cor: L2A processor for users. In: ESA Living Planet Symposium 2016, vol. SP-740, pp. 1–8 (2016)

    Google Scholar 

  19. Kashtan, V., Hnatushenko, V.: A Wavelet and HSV Pansharpening Technology of High Resolution Satellite Images. In: 1st International Workshop on Intelligent Information Technologies and Systems of Information Security (IntelITSsi-2020), pp. 67–76 (2020). http://ceur-ws.org/Vol-2623/paper7.pdf

  20. Kashtan, V., Hnatushenko, V., Shedlovska, Y.: Processing technology of multsipectral remote sensing images. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), pp. 355–358 (2017). https://doi.org/10.1109/ysf.2017.8126647

  21. Kostiantyn, I., Mykhailo, Y., Seliverstov, V.: Deep learning for regular change detection in Ukrainian forest ecosystem with sentinel-2. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 364–376 (2021)

    Article  Google Scholar 

  22. Liming, Z., Jinming, L., Chen, L.: Vehicle detection based on remote sensing image of YOLOV3. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (2020). https://doi.org/10.1109/ITNEC48623.2020.9084975

  23. Liu, J., Maeda, E., Wang, D., Hesikanen, J.: Sensitivity of spectral indices on burned area detection using landsat time series in Savannas of Southern Burkina Faso. Remote Sens. 13(13), 2492 (2021). https://doi.org/10.3390/rs13132492

    Article  Google Scholar 

  24. Liu, Y., Zhong, Y., Qin, Q.: Scene classification based on multiscale Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens 56, 7109–7121 (2018). https://doi.org/10.1109/TGRS.2018.2848473

    Article  Google Scholar 

  25. Miranda, M.S., de Santiago, V.A., Körting, T.S., Leonardi, R., de Freitas, M.L.: Deep convolutional neural network for classifying satellite images with heterogeneous spatial resolutions. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12955, pp. 519–530. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87007-2_37

    Chapter  Google Scholar 

  26. Mohamed, A., Anders, J., Schneider, C.: Monitoring of changes in land use/land cover in Syria from 2010 to 2018 using multitemporal landsat imagery and GSI. Land 9(7), 226 (2020). https://doi.org/10.3390/land9070226

    Article  Google Scholar 

  27. Prati, A., Shan, C., Wang, K.I.K.: Sensors, vision and networks: from video surveillance to activity recognition and health monitoring. J. Ambient Intell. Smart Environ. 11(1), 5–22 (2019). https://doi.org/10.3233/Ais-180510

    Article  Google Scholar 

  28. Quintano, C., Fernández-Manso, A., Fernández-Manso, O.: Combination of landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int. J. Appl. Earth Obs. Geoinf. 64, 221–225 (2018). https://doi.org/10.1016/j.jag.2017.09.014

    Article  Google Scholar 

  29. Rahman, S., Chang, H., Magill, C., Tomkins, K., Hehir: W.: Spatio-temporal assessment of fire severity and vegetation recovery utilising Sentinel-2 imagery in New South Wales, Australia. In: International Geoscience Remote Sensing Symposium, pp. 9960–9963 (2019)

    Google Scholar 

  30. Rauf, H., Saleem, B., Lali, M., Khan, M., Sharif, M., Bukhari, D.: A citrus fruits and leaves dataset for detection and classification of citrus diseases through Machine Learning. Data Brief 26, 104–340 (2019). https://doi.org/10.1016/j.dib.2019.104340

    Article  Google Scholar 

  31. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 779–788 (2016)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. MIT Press, pp. 91-99 (2015)

    Google Scholar 

  33. Rogers, T.W., Jzccard, N., Griffin, L.D.: Automated X-ray image analysis for cargo security: critical review and future promise. J. X-ray Sci. Technol. 25, 33–56 (2017)

    Google Scholar 

  34. Scharvogel, D., Brandmeier, M., Wesi, M.: A deep learning approach for calamity assessment using Sentinel-2 Data. Forests 11(12), 1239 (2020). https://doi.org/10.3390/f11121239

    Article  Google Scholar 

  35. Sriwongsitanon, N., Gao, H., Savenije, H., Maekan, E., Saengsawang, S., Thianpopirug, S.: Comparing the normalized difference infrared index (NDII) with root zone storage in a lumped conceptual model. Hydrol. Earth Syst. Sci. 20, 3361–3377 (2016). https://doi.org/10.5194/hess-20-3361-2016

    Article  Google Scholar 

  36. Tahir, A., et al.: Automatic target detection from satellite imagery using machine learning. Sensors 22(3), 1147 (2022). https://doi.org/10.3390/s22031147

    Article  Google Scholar 

  37. Walter, S., Michele, M., Valter, C., Giorgia, F., Frattaroli, A.: The potentiality of Sentinel-2 to assess the effect of fire events on mediterranean mountain vegetation. Plant Sociol. 57, 11–22 (2020). https://doi.org/10.3897/pls2020571/02

    Article  Google Scholar 

  38. Yulang, C., Jingmin, G., Kebei, Z.: R-CNN-based Satellite components detection in optical images. Int. J. Aeros. Eng., 10 (2020). https://doi.org/10.1155/2020/8816187

  39. Zhu, Q., Zhong, Y., Li, D., Zhang, L.: Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification. IEEE Trans. Geosci. Remote Sens 56, 6180–6195 (2018)

    Google Scholar 

Download references

Acknowledgments

We thank the European Union Copernicus program for providing Sentinel data accessible via the Copernicus Open Access Hub.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vita Kashtan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kashtan, V., Hnatushenko, V. (2023). Deep Learning Technology for Automatic Burned Area Extraction Using Satellite High Spatial Resolution Images. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making. ISDMCI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-16203-9_37

Download citation

Publish with us

Policies and ethics