Skip to main content

Methodology for Solving Forecasting Problems Based on Machine Learning Methods

  • Conference paper
  • First Online:
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making (ISDMCI 2022)

Abstract

The article presents a methodology for solving forecasting problems based on machine learning methods. The technique consists of the following stages - data collection stage; research stage and data preparation; model training stage; the stage of determining the effectiveness of the model; stage of improving the efficiency of the model; visualization. The methodology is designed to systematically solve forecasting problems using various machine learning methods. Using the methodology as an example, the solution of the problem of forecasting the production of electricity for combined power plants using regression, tree-based models, boosting, bagging and neural networks is considered. A feature of the technique is the definition and study of the effectiveness of machine learning models and their improvement. The efficiency of predictive models of various types is analyzed. Various quality indicators were used to assess the quality of forecasts. Boosting is the best predictive model. The results obtained indicate the good quality of the predicted values using the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Machine learning repository, combined cycle power plant data set. https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant#

  2. Allison, P.: Multiple Regression: A Primer, p. 224. Pine Forge Press, Thousand Oaks, CA (1999)

    Google Scholar 

  3. Bari, A., Chaouchi, M., Yung, T.: Predictive Analytics For Dummies, p. 435. John Wiley and Sons, Inc (2016)

    Google Scholar 

  4. Bidyuk, P., Gozhyj, A., Kalinina, I., Vysotska, V., Vasilev, M., Malets, R.: Forecasting nonlinear nonstationary processes in machine learning task. In: Proceedings of the 2020 IEEE 3rd International Conference on Data Stream Mining and Processing, DSMP 2020, pp. 28–32, no. 9204077 (2020)

    Google Scholar 

  5. Bidyuk, P., Gozhyj, A., Matsuki, Y., Kuznetsova, N., Kalinina, I.: Advances in intelligent systems and computing. Lect. Notes Data Eng. Commun. Technol. 1246, 395–408 (2021)

    Google Scholar 

  6. Bidyuk, P., Kalinina, I., Gozhyj, A.: An approach to identifying and filling data gaps in machine learning procedures. Lect. Notes Data Eng. Commun. Technol. 77, 164–176 (2021)

    Article  Google Scholar 

  7. Bojer, C.S.: Understanding machine learning-based forecasting methods: a decomposition framework and research opportunities. Int. J. Forecast. 38(3), 7 (2022). https://doi.org/10.1016/j.ijforecast.2021.11.003

  8. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees: Clusterization and Recognition, p. 368. Chapman and Hall, CRC Press (1984). https://doi.org/10.1201/9781315139470

  9. Dong, H., Gao, Y., Fang, Y., Liu, M., Kong, Y.: The short-term load forecasting for special days based on bagged regression trees in Gingdao, china. Comput. Intell. Neurosci. 2021, 16 (2021). https://doi.org/10.1155/2021/3693294

  10. Hartomo, K., Nataliani, Y.: A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms. PeerJ Comput. Sci. 7(e534), 29 (2021). https://doi.org/10.7717/peerj-cs.534

  11. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

  12. Kaya, H., Tüfekci, P., Gürgen, S.F.: Local and global learning methods for predicting power of a combined gas and steam turbine. In: Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE 2012, pp. 13–18 (2012)

    Google Scholar 

  13. Kelleher, J., Namee, B., D’Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies, p. 624. The MIT Press (2015)

    Google Scholar 

  14. Lantz, B.: Machine Learning with R. Expert techniques for predictive modeling, p. 458. Packt Publishing (2019)

    Google Scholar 

  15. Long, J., Teetor, P.: R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics, p. 600. O’Reilly Media, Inc (2019)

    Google Scholar 

  16. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning forecasting methods. PLoS ONE 13(3), 26 (2018). https://doi.org/10.1371/journal.pone.0194889

  17. Neapolitan, R., Jiang, X.: Artificial intelligence with an introduction to Machine Learning, p. 480. CRC Press, Taylor and Francis Group, Informa business (2018)

    Google Scholar 

  18. Nielsen, A.: Practical Time Series Analysis: Prediction with Statistics and Machine Learning, p. 505. O’Reilly Media, Inc (2019)

    Google Scholar 

  19. Patel, A.: Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data, p. 562. O’Reilly Media, Inc (2019)

    Google Scholar 

  20. Petropoulos, F., Apiletti, D., Assimakopoulos, V.: Forecasting: theory and practice. Int. J. Forecast. 38(3), 705–871 (2022). Elsevier, B.V.: On behalf of Int. Inst. Forecast. (2021). https://doi.org/10.1016/j.ijforecast.2021.11.001

  21. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0

  22. Sarker, I.H.: Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2(3), 1–21 (2021). https://doi.org/10.1007/s42979-021-00592-x

    Article  MathSciNet  Google Scholar 

  23. Scavetta, R., Angelov, B.: Python and R for the Modern Data Scientist: The Best of Both Worlds, p. 198. O’Reilly Media, Inc (2021)

    Google Scholar 

  24. Tufekci, P.: Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst. 60, 126–140 (2014)

    Article  Google Scholar 

  25. Wickham, H., Grolemund, G.: R for Data Science. Import, Tidy, Transform, Visualize, and Model Data, p. 520. O’Reilly Media, Inc. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Gozhyj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalinina, I., Gozhyj, A. (2023). Methodology for Solving Forecasting Problems Based on Machine Learning Methods. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making. ISDMCI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-16203-9_7

Download citation

Publish with us

Policies and ethics