Skip to main content

Towards a Dynamic Vehicular Clustering Improving VoD Services on Vehicular Ad Hoc Networks

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1653))

Included in the following conference series:

  • 744 Accesses

Abstract

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wassim, D., Kyoung, H., Hesham, R., Fethi, F.: Development and Testing of a 3G/LTE Adaptive Data Collection System in Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems 17 (2016)

    Google Scholar 

  2. Araniti, G., Campolo, C., Condoluci, M., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 51(5), 148–157 (2013)

    Article  Google Scholar 

  3. Seong, J.Y.: Preview controller design for vehicle stability with V2V communication. In: IEEE Transactions on Intelligent Transportation Systems, pp. 1–10 (September 2016)

    Google Scholar 

  4. Zeeshan, H.M., Fethi, F.: Large-scale simulations and performance evaluation of connected cars - A V2V communication perspective. Simulation Modeling Practice and Theory 72, 88–103 (2017)

    Google Scholar 

  5. Ruifeng, Z., Libo, C., Shan, B., Jianjie, T.: A method for connected vehicle trajectory prediction and collision warning algorithm based on V2V communication. Int. J. Crashworthiness (2016). https://doi.org/10.1080/13588265.2016.1215584

    Article  Google Scholar 

  6. Kenney, J.: Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  7. Hanbyul, S.K.L., Shinpei, Y., Ying, P., Philippe, S.: LTE evolution for vehicle-to-everything services. IEEE Commun. Mag. 54, 22–28 (2016). June

    Article  Google Scholar 

  8. Ucar, S., Ergen, S.C., Ozkasap, O.: Multihop-cluster-based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination. IEEE Transactions on Vehicular Technology 65, 2621–2636 (April 2015)

    Google Scholar 

  9. Vinel, A.: 3GPP LTE Versus IEEE 802.11p/WAVE: which technology is able to support cooperative vehicular safety applications? IEEE Wireless Communications Letters 1, 125–128 (2012)

    Article  Google Scholar 

  10. Alaya, B., Sellami, L.: Clustering method and symmetric/asymmetric cryptography scheme adapted to securing urban VANET networks. Journal of Information Security and Applications 58 (2021). https://doi.org/10.1016/j.jisa.2021.102779

  11. Mendiboure, L., Chalouf, M.-A., Krief, F.: Edge computing based applications in vehicular environments: comparative study and main issues. J. Comput. Sci. Technol. 34(4), 869–886 (2019). https://doi.org/10.1007/s11390-019-1947-3

    Article  Google Scholar 

  12. Sajid Mushtaq, M., Fowler, S., Augustin, B., Mellouk, A.: QoE in 5G Cloud Networks using MultimediaServices. In: IEEE Wireless Communications and Networking Conference (WCNC) (April 2016)

    Google Scholar 

  13. Zribi, N., Alaya, B., Moulahi, T.: Video streaming in vehicular Ad Hoc networks: applications, challenges and techniques. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 1221–1226 (2019). https://doi.org/10.1109/IWCMC.2019.8766443

  14. Neelakantan Pattathil Chandrasekharamenonand Babu AnchareV: Connectivity analysis of one-dimensionalvehicular ad hoc networks in fading channels. EURASIP Journal on Wireless Communications and Networking (December 2012)

    Google Scholar 

  15. Jeon, S., Kim, G., Kim, B.: Study on V2V-based AEB system performance analysis in various RoadConditions at an intersection. Int. J. Softw. Eng. Its Applic. 9(7), 1–10 (2015)

    Article  Google Scholar 

  16. Ge, X., Cheng, H., Guizani, M., Han, T.: 5G wireless backhaul networks: challenges and research advances. IEEE Network 28(6), 6–11 (December 2014)

    Google Scholar 

  17. Abbas, M.T., Muhammad, A., Song, W.-C.: Road-aware estimation model for path duration in internet of vehicles (IoV). Wireless Pers. Commun. 109(2), 715–738 (2019). https://doi.org/10.1007/s11277-019-06587-5

    Article  Google Scholar 

  18. Afaq, M., Iqbal, J., Ahmed, T., Ul Islam, I., Khan, M., Khan, M.S.: Towards 5G network slicing for vehicular ad-hoc networks: An end-to-end approach. Computer Communications 149, 252-258 (2020)

    Google Scholar 

  19. Iqbal, J., Iqbal, M.A., Ahmad, A., Khan, M., Qamar, A., Han, K.: Comparison of spectral efficiency techniques in device-to-device communication for 5G. IEEE Access 7, 57440–57449 (2019)

    Article  Google Scholar 

  20. Storck, C.R., Duarte-Figueiredo, F.: A 5G V2X ecosystem providing internet of vehicles. Sensors 19(550), 1–20 (2019)

    Google Scholar 

  21. Takai, I., et al.: Optical VEHICLE-TO-VEHICLE communication system using LED transmitterand camera receiver. IEEE Photonics Journal 6(5) (October 2014)

    Google Scholar 

  22. Siddiqi, K., Raza, A.D., Sheikh Muhammad, S.: Visible light communication for V2V intelligent transport system. In: Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), International Conference on (October 2016)

    Google Scholar 

  23. Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., Tonguz, O.: MoZo: a moving zone based routing protocol using pure V2V communication in VANETs. IEEE Transactions on Mobile Computing, pp. 1 (July 2016)

    Google Scholar 

  24. Alaya, B.: Payoff-based dynamic segment replication and graph classification method with attribute vectors adapted to urban VANET. ACM Trans. Multimedia Comput. Commun. Appl. 17(3), 22 (August 2021). Article 85 https://doi.org/10.1145/3440018

  25. Montero, R., Agraz, F., Pagès, A., Spadaro, S.: Enabling multi-segment 5G service provisioning and maintenance through network slicing. J. Netw. Syst. Manage. 28(2), 340–366 (2020). https://doi.org/10.1007/s10922-019-09509-9

    Article  Google Scholar 

  26. Zhang, X., Cheng, W., Zhang, H.: Heterogeneous statistical QoS provisioning over 5G mobile. In: Computer Communications (INFOCOM) IEEE Conference on (August 2015)

    Google Scholar 

  27. Jabbar, R., et al.: Blockchain technology for intelligent transportation systems: a systematic literature review. IEEE Access 10, 20995–21031 (2022). https://doi.org/10.1109/ACCESS.2022.3149958

    Article  Google Scholar 

  28. Khairnar, V.D., Pradhan, S.N.: V2V Communication survey - (wireless technology). Int. J. Computer Technology & Applications 3(1), 370–373 (February 2012)

    Google Scholar 

  29. Martín, J.R., Pérez-Leal, R., Navío-Marco, J.: Towards 5G: techno-economic analysis of suitable use cases. NETNOMICS: Economic Research and Electronic Networking 20(2–3), 153–175 (2019). https://doi.org/10.1007/s11066-019-09134-3

    Article  Google Scholar 

  30. Afaq, M., Song, W.C.: A novel framework for resource orchestration in OpenStack cloud platform. KSII Trans. Internet Inf. Syst. 12, 5404–5424 (2018)

    Google Scholar 

  31. Kishiyama, Y., Benjebbour, A., Ishii, H., Nakamura, T.: Evolution concept and candidate technologies for future steps of LTE-A. In: Proc. of IEEE ICCS (2012)

    Google Scholar 

  32. Noorani, N., Seno, S.A.H.: SDN-and fog computing-based switchable routing using path stability estimation for vehicular ad hoc networks. Peer-to-Peer Netw. (Appl. 2020)

    Google Scholar 

  33. Astely, D., et al.: LTE: the evolution of mobile broadband. IEEE Communications Magazine 47(4) (2009)

    Google Scholar 

  34. Charles, R., Balasubramanian, P., Protocol, V.T.D.: A cluster based trust model for secure communication in VANET. Int. J. Intelli. Eng. Sys. 13, 35–45 (2020)

    Google Scholar 

  35. Jain, V., Kushwah, R.S., Tomar, R.S.: Named data network using trust function for securing vehicular Ad Hoc network. In: Proc. Soft Computing: Theories and Applications, pp. 463–471 (2019)

    Google Scholar 

  36. Xia, H., Zhang, S.S., Li, B.X., Li, L., Cheng, X.G.: Towards a novel trust-based multicast routing for VANET. Security and Communication Networks 2018(1), 1–12 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bechir Alaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alaya, B., Sellami, L., Al Mutiq, M. (2022). Towards a Dynamic Vehicular Clustering Improving VoD Services on Vehicular Ad Hoc Networks. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653. Springer, Cham. https://doi.org/10.1007/978-3-031-16210-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16210-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16209-1

  • Online ISBN: 978-3-031-16210-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics