Skip to main content

Application of Software Defined Networks for Collection of Process Data in Industrial Real-Time Systems

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2022)

Abstract

Modern computer systems are expected to be more and more advanced and therefore their complexity is ever increasing. Some solutions make control systems more open and flexible. Whereas the main goal of others is to improve reliability. Such services may adding failure detection and even failure prediction features. Knowing the possibility of failures with a high level of accuracy may bring excellent management and economic benefits and refers to predictive maintenance. However, it is based on process, and diagnostic data gathered from the monitored system, which sometimes is not straightforward. In this paper, we present a way of obtaining knowledge about the system state without introducing significant modifications to the system itself. It is based on Software Defined Networks SDN, which allows for controlling of communication network traffic on the software level as well as obtaining information about the state of the network or even about the user data that are sent in it. Data gathered in such a way may be forwarded to machine learning services, e.g., to perform predictive maintenance. The conceptual solution presented in this paper was verified during some experimental research performed in a system based on Beckhoff industrial controllers and EtherCAT communication network. In the role of SDN switch and SDN controller Raspberry Pi development boards were used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, K., et al.: Software defined networking for communication and control of cyber-physical systems. In: 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), pp. 803–808 (2015)

    Google Scholar 

  2. Amin, R., et al.: Hybrid SDN networks: a survey of existing approaches. IEEE Commun. Surv. Tutor. 20(4), 3259–3306 (2018)

    Article  Google Scholar 

  3. Andresen, C.A., et al.: Fault detection and prediction in smart grids. In: 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS), pp. 1–6 (2018). https://doi.org/10.1109/AMPS.2018.8494849

  4. Benzekki, K., et al.: Software-defined networking (SDN): a survey. Secur. Commun. Netw. 9(18), 5803–5833 (2016). https://doi.org/10.1002/sec.1737

    Article  Google Scholar 

  5. Bolanowski, M., et al.: Analysis of possible SDN use in the rapid prototyping process as part of the Industry 4.0. Bull. Pol. Acad. Sci. Tech. Sci. 67(1), 21–30 (2019)

    Google Scholar 

  6. Bruckner, D., et al.: An introduction to OPC UA TSN for industrial communication systems. Proc. IEEE 107(6), 1121–1131 (2019)

    Article  Google Scholar 

  7. ETG.1600G (R)V1.0.2: EtherCAT Installation Guideline: Guideline for Planning, Assembling and Commissioning of EtherCAT Networks (2017)

    Google Scholar 

  8. Fan, L., et al.: Research and application of smart grid early warning decision platform based on big data analysis. In: 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Hubei, Yi-chang, China, pp. 645–648. IEEE (2019). https://doi.org/10.1109/IGBSG.2019.8886291

  9. Fischer, S., Doran, H.D.: Embedding Real Time Ethernet: EtherNet/IP on resource constricted platforms. In: ETFA 2011, pp. 1–4 (2011)

    Google Scholar 

  10. Han, Q., et al.: On fault prediction based on industrial big data. In: 2017 36th Chinese Control Conference (CCC), pp. 10127–10131 (2017). https://doi.org/10.23919/ChiCC.2017.8028970

  11. Henneke, D., et al.: Analysis of realizing a future industrial network by means of Software-Defined Networking (SDN). In: 2016 IEEE World Conference on Factory Communication Systems (WFCS), pp. 1–4 (2016)

    Google Scholar 

  12. Kampen, A.-L., Fojcik, M., Cupek, R., Stoj, J.: Low-level wireless and sensor networks for Industry 4.0 communication – presentation. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds.) ICCCI 2021. CCIS, vol. 1463, pp. 474–484. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88113-9_38

    Chapter  Google Scholar 

  13. Kampen, A.-L., et al.: The requirements for using wireless networks with AGV communication in an industry environment. In: 2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 212–218 (2021). https://doi.org/10.1109/WiMob52687.2021.9606399

  14. Kottenstette, N., et al.: Design of networked control systems using passivity. IEEE Trans. Control Syst. Technol. 21(3), 649–665 (2013). https://doi.org/10.1109/TCST.2012.2189211

    Article  Google Scholar 

  15. Kreutz, D., et al.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). https://doi.org/10.1109/JPROC.2014.2371999

    Article  Google Scholar 

  16. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008). https://doi.org/10.1145/1355734.1355746

    Article  Google Scholar 

  17. Ndonda, G.K., Sadre, R.: A low-delay SDN-based countermeasure to eavesdropping attacks in industrial control systems. In: 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 1–7 (2017)

    Google Scholar 

  18. Nguyen, V.Q., Jeon, J.W.: EtherCAT network latency analysis. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 432–436 (2016). https://doi.org/10.1109/CCAA.2016.7813815

  19. Okwuibe, J., et al.: SDN enhanced resource orchestration of containerized edge applications for industrial IoT. IEEE Access. 8, 229117–229131 (2020). https://doi.org/10.1109/ACCESS.2020.3045563

    Article  Google Scholar 

  20. Romero-Gázquez, J.L., Bueno-Delgado, M.V.: Software architecture solution based on SDN for an industrial IoT scenario. Wirel. Commun. Mob. Comput. 2018, e2946575 (2018). https://doi.org/10.1155/2018/2946575

    Article  Google Scholar 

  21. Schneider, B., et al.: Evaluating software-defined networking for deterministic communication in distributed industrial automation systems. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2017)

    Google Scholar 

  22. Schrauf, S., Berttram, P.: Industry 4.0: opportunities and challenges of the industrial internet. PwC (2014)

    Google Scholar 

  23. Stój, J.: Cost-effective hot-standby redundancy with synchronization using EtherCAT and real-time Ethernet protocols. IEEE Trans. Autom. Sci. Eng. 18, 2035–2047 (2020)

    Article  Google Scholar 

  24. Stój, J., et al.: FPGA based industrial Ethernet network analyser for real-time systems providing openness for Industry 4.0. Enterp. Inf. Syst. 0(0), 1–21 (2021). https://doi.org/10.1080/17517575.2021.1948613

  25. Stój, J.: State machine of a redundant computing unit operating as a cyber-physical system control node with hot-standby redundancy. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2019. AISC, vol. 1051, pp. 74–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30604-5_7

    Chapter  Google Scholar 

  26. Wang, F., et al.: A dynamic cybersecurity protection method based on software-defined networking for industrial control systems. In: 2019 Chinese Automation Congress (CAC), pp. 1831–1834 (2019)

    Google Scholar 

  27. Xu, B., et al.: Internet of things and big data analytics for smart oil field malfunction diagnosis. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), pp. 178–181 (2017). https://doi.org/10.1109/ICBDA.2017.8078802

  28. Yang, M., Li, G.: Analysis of PROFINET IO communication protocol. In: 2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control, pp. 945–949 (2014). https://doi.org/10.1109/IMCCC.2014.199

  29. Yoon, H., et al.: Dynamic flow steering for IoT monitoring data in SDN-coordinated IoT-Cloud services. In: 2017 International Conference on Information Networking (ICOIN), pp. 625–627 (2017)

    Google Scholar 

  30. EtherCAT Automation Protocol. EtherCAT for Plant Automation (2012)

    Google Scholar 

  31. Real-Time Wireless Data Plane for Real-Time-Enabled SDN. https://www.it.pt/Publications/PaperConference/34712. Accessed 09 June 2022

  32. SDN (software-defined networking). In: Software Networks, pp. 13–32. Wiley (2020). https://doi.org/10.1002/9781119694748.ch2

Download references

Acknowledgement

The research leading to these results received funding from the Norway Grants 2014–2021, which the National Centre operates for Research and Development under the project “Automated Guided Vehicles integrated with Collaborative Robots for Smart Industry Perspective” (Project Contract no.: NOR/POLNOR/CoBotAGV/0027/2019-00) and partially by the Polish Ministry of Science and Higher Education Funds for Statutory Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Stój .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smołka, I., Stój, J., Fojcik, M. (2022). Application of Software Defined Networks for Collection of Process Data in Industrial Real-Time Systems. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653. Springer, Cham. https://doi.org/10.1007/978-3-031-16210-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16210-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16209-1

  • Online ISBN: 978-3-031-16210-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics