Skip to main content

Distributed Anomalies Detection Using Isolation Forest and Spark

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2022)

Abstract

Anomaly detection is a major issue for several applications such as industrial failure detection, cybersecurity or transport. Several approaches, such as statistical methods, machine learning and sketch, have been explored by different research communities to detect anomalies in an increasingly challenging context. Indeed, facing the huge volume of data generated at an increasingly fast speed, the response time of the algorithms and their distributivity have become determining criteria, in addition to their accuracy in detecting anomalies. We focus in this paper on the unsupervised anomaly detection algorithm based on binary trees: Isolation Forest. It is a very powerful algorithm with an excellent accuracy and a very low execution time thanks to its linear complexity. In particular, we study the architecture of two distribution solutions of Isolation Forest based on the Apache Spark framework. We then compare the performance of these two solutions by testing them against 4 real commonly used datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://spark.apache.org/.

References

  1. Ldiforest (2019). https://github.com/linkedin/isolation-forest

  2. Aggarwal, C.C.: Outlier Analysis, 2nd edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3

    Book  MATH  Google Scholar 

  3. Asad, M., Moustafa, A., Ito, T.: Federated learning versus classical machine learning: a convergence comparison. arXiv:2107.10976 (2021)

  4. Bogatinovski, J., Nedelkoski, S.: Multi-source anomaly detection in distributed IT systems. In: Hacid, H., et al. (eds.) ICSOC 2020. LNCS, vol. 12632, pp. 201–213. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76352-7_22

    Chapter  Google Scholar 

  5. Chabchoub, Y., Togbe, M.U., Boly, A., Chiky, R.: An in-depth study and improvement of isolation forest. IEEE Access 10, 10219–10237 (2022)

    Article  Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  7. Das, K., Bhaduri, K., Votava, P.: Distributed anomaly detection using 1-class svm for vertically partitioned data. Stat. Anal. Data Min ASA Data Sci. J. 4(4), 393–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. 46(20), 12–17 (2013)

    Article  Google Scholar 

  9. Dua, D., Graff, C.: Uci machine learning repository [https://archive.ics.uci.edu/ml/index.php]. School of Information and Computer Science, University of California, Irvine, CA, vol. 25, p. 27 (2019)

  10. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Heidelberg (1980). https://doi.org/10.1007/978-94-015-3994-4

    Book  MATH  Google Scholar 

  11. Hussain, N., Rani, P., Chouhan, H., Gaur, U.S.: Cyber security and privacy of connected and automated vehicles (CAVs)-based federated learning: challenges, opportunities, and open issues. In: Federated Learning for IoT Applications. EICC, pp. 169–183. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85559-8_11

    Chapter  Google Scholar 

  12. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Disc. Data (TKDD) 6(1), 1–39 (2012)

    Article  Google Scholar 

  14. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  15. Meng, X., et al.: Mllib: machine learning in apache spark. J. Mach. Learn. Res. 17(1), 1235–1241 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Pandey, M., Pandey, S., Kumar, A.: Introduction to federated learning. In: Federated Learning for IoT Applications. EICC, pp. 1–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85559-8_1

    Chapter  Google Scholar 

  17. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  18. Qasem, M.H., Hudaib, A., Obeid, N., Almaiah, M.A., Almomani, O., Al-Khasawneh, A.: Multi-agent systems for distributed data mining techniques: an overview. In: Baddi, Y., Gahi, Y., Maleh, Y., Alazab, M., Tawalbeh, L. (eds.) Big Data Intelligence for Smart Applications. SCI, vol. 994, pp. 57–92. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87954-9_3

    Chapter  Google Scholar 

  19. Rayana, S.: ODDS Library. Stony Brook University, Department of Computer Sciences (2016). http://odds.cs.stonybrook.edu

  20. Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on Apache Spark. Int. J. Data Sci. Anal. 1(3), 145–164 (2016). https://doi.org/10.1007/s41060-016-0027-9

    Article  Google Scholar 

  21. Solaimani, M., Iftekhar, M., Khan, L., Thuraisingham, B., Ingram, J.B.: Spark-based anomaly detection over multi-source vmware performance data in real-time. In: IEEE Symposium on Computational Intelligence in Cyber Security (CICS), pp. 1–8. IEEE (2014)

    Google Scholar 

  22. Togbe, M., Chabchoub, Y., Boly, A., Chiky, R.: Etude comparative des méthodes de détection d’anomalies. Revue des Nouvelles Technologies de l’Information (2020)

    Google Scholar 

  23. Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer, J.S.: A survey on distributed machine learning. ACM Comput. Surv. (CSUR) 53(2), 1–33 (2020)

    Article  Google Scholar 

  24. Wang, C., Zhao, Z., Gong, L., Zhu, L., Liu, Z., Cheng, X.: A distributed anomaly detection system for in-vehicle network using HTM. IEEE Access 6, 9091–9098 (2018)

    Article  Google Scholar 

  25. Yang, F.: Contributors: Fdiforest (2018). https://github.com/titicaca/spark-iforest

  26. Zeng, L., et al.: Distributed data mining: a survey. Inf. Technol. Manag. 13(4), 403–409 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurras Ulbricht Togbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Togbe, M.U., Chabchoub, Y., Boly, A., Chiky, R. (2022). Distributed Anomalies Detection Using Isolation Forest and Spark. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653. Springer, Cham. https://doi.org/10.1007/978-3-031-16210-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16210-7_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16209-1

  • Online ISBN: 978-3-031-16210-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics