Abstract
In software engineering (SE), improving the quality of code and design by relying on pre-established restructuring (refactoring), such as detection and injection of a design pattern are still challenging problems. In this article, we focus on the Singleton design pattern, in which we indicate its variants implementation and define 33 features that can identify this pattern in its standard and non-standard form. Significant information can be extracted by applying the structural and semantic analysis of the source code. So use this information; it becomes easier to identify a pattern and inject it. We created specific data using 20,000 code snippets. This data is used to train deep learning models called RNN-LSTM classifiers to extract information from object-oriented software systems. The empirical result proves that our proposed LSTM-RNN Classifier can successfully extract proposed information with excellent results in terms of prediction recall and F1-score.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Stencel, K., Węgrzynowicz, P.: Implementation variants of the singleton design pattern. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 396–406. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88875-8_61
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Vol. 1. MIT Press Cambridge (2016)
Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of software. In: Software Engineering (ICSE). 34th International Conference 2012, pp. 837–847. IEEE (2012)
Najam, N., Aldeida, A., Zhengc, Y.: Feature-based software design pattern detection (2021)
Fujaba. https://web.cs.upb.de/archive/fujaba. Accessed 12 Apr 2022
Paakki, J., Karhinen, A., Gustafsson, J., Nenonen, L., Verkamo, A.I.: Software metrics by architectural pattern mining. In: Proceedings of the International Conference on Software: Theory and Practice, pp. 325–332 (2000)
Bernardi, M.L., Cimitile, M., Di Lucca, G.: Design pattern detection using a DSL-driven graph matching approach. J. Softw. Evolut. Process 26(12), 1233–1266 (2014)
Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)
Mayvan, B.B., Rasoolzadegan, A.: Design pattern detection based on the graph theory. Knowl. Based Syst. 120, 211–225 (2017)
Zanoni, M.: Data mining techniques for design pattern detection, Ph.D. thesis, Milano, Italy (2012)
Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In: 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC), pp. 200–210. IEEE (2018)
McBurney, P.W., McMillan, C.: Automatic source code summarization of context for Java methods. IEEE Trans. Softw. Eng. 42, 103–119 (2015)
McBurney, P.W., McMillan, C.: An empirical study of the textual similarity between source code and source code summaries. Empir. Softw. Eng. 21(1), 17–42 (2014). https://doi.org/10.1007/s10664-014-9344-6
Nazar, N., Jiang, H., Gao, G., Zhang, T., Li, X., Ren, Z.: Source code fragment summarization with small-scale crowdsourcing based features. Front. Comp. Sci. 10(3), 504–517 (2016). https://doi.org/10.1007/s11704-015-4409-2
Moreno, L., Marcus, A., Pollock, L., Vijay-Shanker, K.: Jsummarizer: an automatic generator of natural language summaries for java classes. In: 2013 21st International Conference on Program Comprehension (ICPC), pp. 230–232. IEEE (2013)
Sherstinsky. A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. J. Phys. D Nonlinear Phenom. 404, 132306 (2020)
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv: 1412.3555 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nacef, A., Khalfallah, A., Bahroun, S., Ben Ahmed, S. (2022). Defining and Extracting Singleton Design Pattern Information from Object-Oriented Software Program. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653. Springer, Cham. https://doi.org/10.1007/978-3-031-16210-7_58
Download citation
DOI: https://doi.org/10.1007/978-3-031-16210-7_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16209-1
Online ISBN: 978-3-031-16210-7
eBook Packages: Computer ScienceComputer Science (R0)