Skip to main content

Going Beyond the Cookie Theft Picture Test: Detecting Cognitive Impairments Using Acoustic Features

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2022)

Abstract

Standardized tests play a crucial role in the detection of cognitive impairment. Previous work demonstrated that automatic detection of cognitive impairment is possible using audio data from a standardized picture description task. The presented study goes beyond that, evaluating our methods on data taken from two standardized neuropsychological tests, namely the German SKT and a German version of the CERAD-NB, and a semi-structured clinical interview between a patient and a psychologist. For the tests, we focus on speech recordings of three sub-tests: reading numbers (SKT 3), interference (SKT 7), and verbal fluency (CERAD-NB 1). We show that acoustic features from standardized tests can be used to reliably discriminate cognitively impaired individuals from non-impaired ones. Furthermore, we provide evidence that even features extracted from random speech samples of the interview can be a discriminator of cognitive impairment. In our baseline experiments, we use OpenSMILE features and Support Vector Machine classifiers. In an improved setup, we show that using wav2vec 2.0 features instead, we can achieve an accuracy of up to 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Research approved by the Ethics Committee of the Nuremberg Hospital under File No. IRB-2021-021; each subject gave informed consent prior to recording.

References

  1. Aebi, C.: Validierung der neuropsychologischen Testbatterie CERAD-NP : eine Multi-Center Studie (2002). https://doi.org/10.5451/UNIBAS-002728525

    Article  Google Scholar 

  2. Al-Hameed, S., Benaissa, M., Christensen, H.: Simple and robust audio-based detection of biomarkers for Alzheimer’s disease. In: Proceedings of the 7th Workshop on Speech and Language Processing for Assistive Technologies (SLPAT 2016), pp. 32–36 (2016). https://doi.org/10.21437/SLPAT.2016-6

  3. Baevski, A., Hsu, W.N., Conneau, A., Auli, M.: Unsupervised speech recognition. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 27826–27839. Curran Associates, Inc. (2021)

    Google Scholar 

  4. Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: a framework for self-supervised learning of speech representations. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12449–12460. Curran Associates, Inc. (2020)

    Google Scholar 

  5. Becker, J.T., Boller, F., Lopez, O.L., Saxton, J., McGonigle, K.L.: The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis. Arch. Neurol. 51(6), 585–594 (1994)

    Article  Google Scholar 

  6. Berres, M., Monsch, A.U., Bernasconi, F., Thalmann, B., Stähelin, H.B.: Normal ranges of neuropsychological tests for the diagnosis of Alzheimer’s disease. Stud. Health Technol. Inf. 77, 195–199 (2000)

    Google Scholar 

  7. Borod, J.C., Goodglass, H., Kaplan, E.: Normative data on the Boston diagnostic aphasia examination, parietal lobe battery, and the Boston naming test. J. Clin. Neuropsychol. 2(3), 209–215 (1980). https://doi.org/10.1080/01688638008403793

    Article  Google Scholar 

  8. Cattell, R.B., Tiner, L.G.: The varieties of structural rigidity. J. Pers. 17(3), 321–341 (1949). https://doi.org/10.1111/j.1467-6494.1949.tb01217.x

    Article  Google Scholar 

  9. Cooper, S.: The clinical assessment of the patient with early dementia. J. Neurol. Neurosurg. Psychiatry 76(suppl_5), v15–v24 (2005). https://doi.org/10.1136/jnnp.2005.081133

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  11. Eyben, F., Wöllmer, M., Schuller, B.: Opensmile: the munich versatile and fast open-source audio feature extractor. In: Proceedings of the International Conference on Multimedia - MM 2010, p. 1459. ACM Press, Firenze, Italy (2010). https://doi.org/10.1145/1873951.1874246

  12. Frankenberg, C., et al.: Verbal fluency in normal aging and cognitive decline: results of a longitudinal study. Comput. Speech Lang. 68, 101195 (2021). https://doi.org/10.1016/j.csl.2021.101195

    Article  Google Scholar 

  13. Fraser, K.C., Meltzer, J.A., Rudzicz, F.: Linguistic features identify Alzheimer’s disease in narrative speech. J. Alzheimer’s disease: JAD 49(2), 407–422 (2016). https://doi.org/10.3233/JAD-150520

    Article  Google Scholar 

  14. König, A., Linz, N., Tröger, J., Wolters, M., Alexandersson, J., Robert, P.: Fully automatic speech-based analysis of the semantic verbal fluency task. Dement. Geriatr. Cogn. Disord. 45(3–4), 198–209 (2018). https://doi.org/10.1159/000487852

    Article  Google Scholar 

  15. König, A., Satt, A., Sorin, A., Hoory, R., Toledo-Ronen, O., Derreumaux, A., Manera, V., Verhey, F., Aalten, P., Robert, P.H., David, R.: Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 1(1), 112–124 (2015). https://doi.org/10.1016/j.dadm.2014.11.012

    Article  Google Scholar 

  16. Luz, S., Haider, F., de la Fuente, S., Fromm, D., MacWhinney, B.: Alzheimer’s dementia recognition through spontaneous speech: the ADReSS challenge. In: Interspeech 2020, pp. 2172–2176. ISCA (2020). https://doi.org/10.21437/Interspeech.2020-2571

  17. Luz, S., Haider, F., de la Fuente, S., Fromm, D., MacWhinney, B.: Detecting cognitive decline using speech only: the ADReSSo challenge. In: Interspeech 2021, pp. 3780–3784. ISCA, August 2021. https://doi.org/10.21437/Interspeech.2021-1220

  18. Morris, J.C., et al.: The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer’s disease. Neurology 39(9), 1159–1165 (1989). https://doi.org/10.1212/WNL.39.9.1159

  19. Nguyen, D.D., et al.: Acoustic voice characteristics with and without wearing a facemask. Sci. Rep. 11(1), 5651 (2021). https://doi.org/10.1038/s41598-021-85130-8

    Article  Google Scholar 

  20. Orimaye, S.O., Wong, J.S.M., Golden, K.J., Wong, C.P., Soyiri, I.N.: Predicting probable Alzheimer’s disease using linguistic deficits and biomarkers. BMC Bioinf. 18(1), 34 (2017). https://doi.org/10.1186/s12859-016-1456-0

    Article  Google Scholar 

  21. Pepino, L., Riera, P., Ferrer, L.: Emotion recognition from speech using wav2vec 2.0 embeddings. In: Interspeech 2021, pp. 3400–3404. ISCA, August 2021. https://doi.org/10.21437/Interspeech.2021-703

  22. Pérez-Toro, P., et al.: Influence of the interviewer on the automatic assessment of Alzheimer’s disease in the context of the ADReSSo challenge. In: Proceedings of the Interspeech 2021, pp. 3785–3789 (2021)

    Google Scholar 

  23. Schuller, B.W., et al.: The INTERSPEECH 2021 computational paralinguistics challenge: COVID-19 cough, COVID-19 speech, escalation and primates. In: Proceedings INTERSPEECH 2021, 22nd Annual Conference of the International Speech Communication Association. ISCA, Brno, Czechia, September 2021

    Google Scholar 

  24. Schuller, B., et al.: The INTERSPEECH 2016 computational paralinguistics challenge: deception, sincerity and native language. In: Proceedings of the Interspeech 2016, pp. 2001–2005 (2016). https://doi.org/10.21437/Interspeech.2016-129

  25. Sheehan, B.: Assessment scales in dementia. Ther. Adv. Neurol. Disord. 5(6), 349–358 (2012). https://doi.org/10.1177/1756285612455733

    Article  Google Scholar 

  26. Stemmler, M., Lehfeld, H., Horn, R.: SKT nach Erzigkeit - SKT Manual Edition 2015, vol. 1. Universität Erlangen-Nürnberg, Erlangen, Germany (2015)

    Google Scholar 

  27. Vincze, V., et al.: Linguistic parameters of spontaneous speech for identifying mild cognitive impairment and Alzheimer disease. Comput. Linguist. 48, 119–153 (2022)

    Article  Google Scholar 

  28. World Health Organization: Global status report on the public health response to dementia. World Health Organization, Geneva (2021)

    Google Scholar 

  29. Xu, X., Kang, Y., Cao, S., Lin, B., Ma, L.: Explore wav2vec 2.0 for mispronunciation detection. In: Interspeech 2021, pp. 4428–4432. ISCA, August 2021. https://doi.org/10.21437/Interspeech.2021-777

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, F., Erzigkeit, A., Lehfeld, H., Hillemacher, T., Riedhammer, K., Bayerl, S.P. (2022). Going Beyond the Cookie Theft Picture Test: Detecting Cognitive Impairments Using Acoustic Features. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16270-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16269-5

  • Online ISBN: 978-3-031-16270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics