Abstract
Standardized tests play a crucial role in the detection of cognitive impairment. Previous work demonstrated that automatic detection of cognitive impairment is possible using audio data from a standardized picture description task. The presented study goes beyond that, evaluating our methods on data taken from two standardized neuropsychological tests, namely the German SKT and a German version of the CERAD-NB, and a semi-structured clinical interview between a patient and a psychologist. For the tests, we focus on speech recordings of three sub-tests: reading numbers (SKT 3), interference (SKT 7), and verbal fluency (CERAD-NB 1). We show that acoustic features from standardized tests can be used to reliably discriminate cognitively impaired individuals from non-impaired ones. Furthermore, we provide evidence that even features extracted from random speech samples of the interview can be a discriminator of cognitive impairment. In our baseline experiments, we use OpenSMILE features and Support Vector Machine classifiers. In an improved setup, we show that using wav2vec 2.0 features instead, we can achieve an accuracy of up to 85%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Research approved by the Ethics Committee of the Nuremberg Hospital under File No. IRB-2021-021; each subject gave informed consent prior to recording.
References
Aebi, C.: Validierung der neuropsychologischen Testbatterie CERAD-NP : eine Multi-Center Studie (2002). https://doi.org/10.5451/UNIBAS-002728525
Al-Hameed, S., Benaissa, M., Christensen, H.: Simple and robust audio-based detection of biomarkers for Alzheimer’s disease. In: Proceedings of the 7th Workshop on Speech and Language Processing for Assistive Technologies (SLPAT 2016), pp. 32–36 (2016). https://doi.org/10.21437/SLPAT.2016-6
Baevski, A., Hsu, W.N., Conneau, A., Auli, M.: Unsupervised speech recognition. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 27826–27839. Curran Associates, Inc. (2021)
Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: a framework for self-supervised learning of speech representations. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12449–12460. Curran Associates, Inc. (2020)
Becker, J.T., Boller, F., Lopez, O.L., Saxton, J., McGonigle, K.L.: The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis. Arch. Neurol. 51(6), 585–594 (1994)
Berres, M., Monsch, A.U., Bernasconi, F., Thalmann, B., Stähelin, H.B.: Normal ranges of neuropsychological tests for the diagnosis of Alzheimer’s disease. Stud. Health Technol. Inf. 77, 195–199 (2000)
Borod, J.C., Goodglass, H., Kaplan, E.: Normative data on the Boston diagnostic aphasia examination, parietal lobe battery, and the Boston naming test. J. Clin. Neuropsychol. 2(3), 209–215 (1980). https://doi.org/10.1080/01688638008403793
Cattell, R.B., Tiner, L.G.: The varieties of structural rigidity. J. Pers. 17(3), 321–341 (1949). https://doi.org/10.1111/j.1467-6494.1949.tb01217.x
Cooper, S.: The clinical assessment of the patient with early dementia. J. Neurol. Neurosurg. Psychiatry 76(suppl_5), v15–v24 (2005). https://doi.org/10.1136/jnnp.2005.081133
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)
Eyben, F., Wöllmer, M., Schuller, B.: Opensmile: the munich versatile and fast open-source audio feature extractor. In: Proceedings of the International Conference on Multimedia - MM 2010, p. 1459. ACM Press, Firenze, Italy (2010). https://doi.org/10.1145/1873951.1874246
Frankenberg, C., et al.: Verbal fluency in normal aging and cognitive decline: results of a longitudinal study. Comput. Speech Lang. 68, 101195 (2021). https://doi.org/10.1016/j.csl.2021.101195
Fraser, K.C., Meltzer, J.A., Rudzicz, F.: Linguistic features identify Alzheimer’s disease in narrative speech. J. Alzheimer’s disease: JAD 49(2), 407–422 (2016). https://doi.org/10.3233/JAD-150520
König, A., Linz, N., Tröger, J., Wolters, M., Alexandersson, J., Robert, P.: Fully automatic speech-based analysis of the semantic verbal fluency task. Dement. Geriatr. Cogn. Disord. 45(3–4), 198–209 (2018). https://doi.org/10.1159/000487852
König, A., Satt, A., Sorin, A., Hoory, R., Toledo-Ronen, O., Derreumaux, A., Manera, V., Verhey, F., Aalten, P., Robert, P.H., David, R.: Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 1(1), 112–124 (2015). https://doi.org/10.1016/j.dadm.2014.11.012
Luz, S., Haider, F., de la Fuente, S., Fromm, D., MacWhinney, B.: Alzheimer’s dementia recognition through spontaneous speech: the ADReSS challenge. In: Interspeech 2020, pp. 2172–2176. ISCA (2020). https://doi.org/10.21437/Interspeech.2020-2571
Luz, S., Haider, F., de la Fuente, S., Fromm, D., MacWhinney, B.: Detecting cognitive decline using speech only: the ADReSSo challenge. In: Interspeech 2021, pp. 3780–3784. ISCA, August 2021. https://doi.org/10.21437/Interspeech.2021-1220
Morris, J.C., et al.: The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer’s disease. Neurology 39(9), 1159–1165 (1989). https://doi.org/10.1212/WNL.39.9.1159
Nguyen, D.D., et al.: Acoustic voice characteristics with and without wearing a facemask. Sci. Rep. 11(1), 5651 (2021). https://doi.org/10.1038/s41598-021-85130-8
Orimaye, S.O., Wong, J.S.M., Golden, K.J., Wong, C.P., Soyiri, I.N.: Predicting probable Alzheimer’s disease using linguistic deficits and biomarkers. BMC Bioinf. 18(1), 34 (2017). https://doi.org/10.1186/s12859-016-1456-0
Pepino, L., Riera, P., Ferrer, L.: Emotion recognition from speech using wav2vec 2.0 embeddings. In: Interspeech 2021, pp. 3400–3404. ISCA, August 2021. https://doi.org/10.21437/Interspeech.2021-703
Pérez-Toro, P., et al.: Influence of the interviewer on the automatic assessment of Alzheimer’s disease in the context of the ADReSSo challenge. In: Proceedings of the Interspeech 2021, pp. 3785–3789 (2021)
Schuller, B.W., et al.: The INTERSPEECH 2021 computational paralinguistics challenge: COVID-19 cough, COVID-19 speech, escalation and primates. In: Proceedings INTERSPEECH 2021, 22nd Annual Conference of the International Speech Communication Association. ISCA, Brno, Czechia, September 2021
Schuller, B., et al.: The INTERSPEECH 2016 computational paralinguistics challenge: deception, sincerity and native language. In: Proceedings of the Interspeech 2016, pp. 2001–2005 (2016). https://doi.org/10.21437/Interspeech.2016-129
Sheehan, B.: Assessment scales in dementia. Ther. Adv. Neurol. Disord. 5(6), 349–358 (2012). https://doi.org/10.1177/1756285612455733
Stemmler, M., Lehfeld, H., Horn, R.: SKT nach Erzigkeit - SKT Manual Edition 2015, vol. 1. Universität Erlangen-Nürnberg, Erlangen, Germany (2015)
Vincze, V., et al.: Linguistic parameters of spontaneous speech for identifying mild cognitive impairment and Alzheimer disease. Comput. Linguist. 48, 119–153 (2022)
World Health Organization: Global status report on the public health response to dementia. World Health Organization, Geneva (2021)
Xu, X., Kang, Y., Cao, S., Lin, B., Ma, L.: Explore wav2vec 2.0 for mispronunciation detection. In: Interspeech 2021, pp. 4428–4432. ISCA, August 2021. https://doi.org/10.21437/Interspeech.2021-777
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Braun, F., Erzigkeit, A., Lehfeld, H., Hillemacher, T., Riedhammer, K., Bayerl, S.P. (2022). Going Beyond the Cookie Theft Picture Test: Detecting Cognitive Impairments Using Acoustic Features. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-16270-1_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16269-5
Online ISBN: 978-3-031-16270-1
eBook Packages: Computer ScienceComputer Science (R0)