Skip to main content

New Language Identification and Sentiment Analysis Modules for Social Media Communication

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13502))

Included in the following conference series:

  • 1083 Accesses

Abstract

The style and vocabulary of social media communication, such as chats, discussions or comments, differ vastly from standard languages. Specifically in internal business communication, the texts contain large amounts of language mixins, professional jargon and occupational slang, or colloquial expressions. Standard natural language processing tools thus mostly fail to detect basic text processing attributes such as the prevalent language of a message or communication or their sentiment.

In the presented paper, we describe the development and evaluation of new modules specifically designed for language identification and sentiment analysis of informal business communication inside a large international company. Besides the details of the module architectures, we offer a detailed comparison with other state-of-the-art tools for the same purpose and achieve an improvement of 10–13 % in accuracy with selected problematic datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The language used in social media communications.

  2. 2.

    cs, csd, da, de, en, es, fi, fr, hu, it, jp, nl, no, pl, ru, se, sk, skd, sw, and zh.

  3. 3.

    https://www.wikipedia.org/.

  4. 4.

    https://tatoeba.org.

  5. 5.

    https://gitlab.fi.muni.cz/nlp/internetlangident and

    https://gitlab.fi.muni.cz/nlp/internet-sentiment-analysis.

References

  1. Agarwal, B., Poria, S., Mittal, N., Gelbukh, A., Hussain, A.: Concept-level sentiment analysis with dependency-based semantic parsing: a novel approach. Cogn. Comput. 7(4), 487–499 (2015)

    Article  Google Scholar 

  2. Balducci, B., Marinova, D.: Unstructured data in marketing. J. Acad. Mark. Sci. 46(4), 557–590 (2018)

    Google Scholar 

  3. Bilík, J.: Emotion detection in plain text (in Czech) (2014). https://is.muni.cz/th/ko3aa/

  4. Chan, S.W., Chong, M.W.: Sentiment analysis in financial texts. Decis. Support Syst. 94, 53–64 (2017)

    Article  Google Scholar 

  5. Chen, Y., Skiena, S.: Building sentiment lexicons for all major languages. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pp. 383–389 (2014)

    Google Scholar 

  6. Dashtipour, K., Poria, S., Hussain, A., Cambria, E., Hawalah, A.Y., Gelbukh, A., Zhou, Q.: Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn. Comput. 8(4), 757–771 (2016)

    Article  Google Scholar 

  7. Esuli, A., Sebastiani, F.: SentiWordNet: a publicly available lexical resource for opinion mining. In: Proceedings of the Fifth International Con Language Resources and Evaluation (LREC’06) (2006)

    Google Scholar 

  8. Fellbaum, C. (ed.): WordNet: An electronic lexical database. MIT Press (1998)

    Google Scholar 

  9. Greco, F., Polli, A.: Emotional text mining: customer profiling in brand management. Int. J. Inf. Manage. 51, 101934 (2020)

    Article  Google Scholar 

  10. Jakubíček, M., Kilgarriff, A., Kovář, V., Rychlý, P., Suchomel, V.: The tenten corpus family. In: 7th International Corpus Linguistics Conference CL, pp. 125–127. Lancaster University (2013)

    Google Scholar 

  11. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)

  12. Koublová, A.: Monitoring the use of subjective adjectives in connection with named entities in Czech internet news (in Czech) (2014). https://is.muni.cz/th/jlfc4/

  13. Lison, P., Tiedemann, J., Kouylekov, M.: Opensubtitles 2018: statistical rescoring of sentence alignments in large, noisy parallel corpora. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018)

    Google Scholar 

  14. Lui, M., Baldwin, T.: langid.py: An off-the-shelf language identification tool. In: Proceedings of the ACL 2012 System Demonstrations, pp. 25–30. Association for Computational Linguistics, Jeju Island, Korea, July 2012. https://aclanthology.org/P12-3005

  15. Nielsen, F.Å.: Afinn, March 2011. http://www2.compute.dtu.dk/pubdb/pubs/6010-full.html

  16. Rychlý, P.: CzAccent - simple tool for restoring accents in czech texts. In: Aleš Horák, P.R. (ed.) 6th Workshop on Recent Advances in Slavonic Natural Language Processing, pp. 15–22. Tribun EU, Brno (2012), https://nlp.fi.muni.cz/raslan/2012/paper14.pdf

  17. Stray, V., Moe, N.B., Noroozi, M.: Slack me if you can! using enterprise social networking tools in virtual agile teams. In: 2019 ACM/IEEE 14th International Conference on Global Software Engineering (ICGSE), pp. 111–121. IEEE (2019)

    Google Scholar 

  18. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  19. Toftrup, M., Asger Sørensen, S., Ciosici, M.R., Assent, I.: A reproduction of Apple’s bi-directional LSTM models for language identification in short strings. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop, pp. 36–42. Association for Computational Linguistics, April 2021. 10.18653/v1/2021.eacl-srw.6, https://aclanthology.org/2021.eacl-srw.6

  20. Wang, Y., Kung, L., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126, 3–13 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the Ministry of Education of CR within the LINDAT-CLARIAH-CZ project LM2018101. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Horák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabol, R., Horák, A. (2022). New Language Identification and Sentiment Analysis Modules for Social Media Communication. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16270-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16269-5

  • Online ISBN: 978-3-031-16270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics