Skip to main content

Resource-Constrained Implementation of Deep Learning Algorithms for Dynamic Touch Modality Classification

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

  • 1208 Accesses

Abstract

Integrating Machine Learning (ML) algorithms with tactile sensing arrays yield sophisticated systems capable of performing intelligent tasks. Such systems can be used in prosthetic devices and robotics applications, enabling conducting daily tasks and manipulations. This paper presents low-cost and resource-constrained implementations of deep learning algorithms for the classification of dynamic touch modality based on alphabetic letter patterns. This work provides a comparison between two types of deep neural networks: 1-D Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Moreover, the models providing the best performance in terms of accuracy and computational cost have been deployed on a resource-constrained embedded system. Experimental results show that 1-D CNN outperforms RNNs in terms of both accuracy and computational cost achieving a classification time of 242 ms using 32-bit floating point on the Arduino Nano BLE hardware device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahiya, R.S., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.J.: Directions toward effective utilization of tactile skin: a review. IEEE Sens. J. 13(11), 4121–4138 (2013)

    Article  Google Scholar 

  2. Cheng, G., Dean-Leon, E., Bergner, F., Olvera, J.R.G., Leboutet, Q., Mittendorfer, P.: A comprehensive realization of robot skin: sensors, sensing, control, and applications. Proc. IEEE 107(10), 2034–2051 (2019)

    Article  Google Scholar 

  3. Abbass, Y., Saleh, M., Dosen, S., Valle, M.: Embedded electrotactile feedback system for hand prostheses using matrix electrode and electronic skin. IEEE Trans. Biomed. Circuits Syst. 15(5), 912–925 (2021)

    Article  Google Scholar 

  4. Gianoglio, C., Ragusa, E., Zunino, R., Valle, M.: 1-D convolutional neural networks for touch modalities classification. In: 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1–6. IEEE (2021)

    Google Scholar 

  5. Su, Z., et al.: Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 297–303 (2015)

    Google Scholar 

  6. Ibrahim, A., Ali, H.H., Hassan, M.H., Valle, M.: Convolutional neural networks based tactile object recognition for tactile sensing system. In: Saponara, S., De Gloria, A. (eds.) Applications in Electronics Pervading Industry, Environment and Society, pp. 280–285. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95498-7_39

    Chapter  Google Scholar 

  7. Dahiya, R., et al.: Large-area soft e-skin: the challenges beyond sensor designs. Proc. IEEE 107(10), 2016–2033 (2019)

    Article  Google Scholar 

  8. Alameh, M., Abbass, Y., Ibrahim, A., Moser, G., Valle, M.: Touch modality classification using recurrent neural networks. IEEE Sens. J. 21(8), 9983–9993 (2021)

    Article  Google Scholar 

  9. Osta, M., et al.: An energy efficient system for touch modality classification in electronic skin applications. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2019)

    Google Scholar 

  10. Silvera Tawil, D., Rye, D., Velonaki, M.: Interpretation of the modality of touch on an artificial arm covered with an EIT-based sensitive skin. Int. J. Robot. Res. 31(13), 1627–1641 (2012)

    Article  Google Scholar 

  11. Alameh, M., Ibrahim, A., Valle, M., Moser, G.: DCNN for tactile sensory data classification based on transfer learning. In: 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), pp. 237–240. IEEE (2019)

    Google Scholar 

  12. Jung, M.M., Poel, M., Poppe, R., Heylen, D.K.J.: Automatic recognition of touch gestures in the corpus of social touch. J. Multimodal User Interfaces 11(1), 81–96 (2016). https://doi.org/10.1007/s12193-016-0232-9

    Article  Google Scholar 

  13. Alameh, M., Abbass, Y., Ibrahim, A., Valle, M.: Smart tactile sensing systems based on embedded CNN implementations. Micromachines 11(1), 103 (2020)

    Article  Google Scholar 

  14. Gandarias, J.M., Gómez-de Gabriel, J.M., García-Cerezo, A.: Human and object recognition with a high-resolution tactile sensor. In: 2017 IEEE Sensors, pp. 1–3. IEEE (2017)

    Google Scholar 

  15. Gianoglio, C., Ragusa, E., Gastaldo, P., Valle, M.: A novel learning strategy for the trade-off between accuracy and computational cost: a touch modalities classification case study. IEEE Sens. J. 22(1), 659–670 (2021)

    Article  Google Scholar 

  16. Amin, Y., Gianoglio, C., Valle, M.: Computationally light algorithms for tactile sensing signals elaboration and classification. In: 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1–6 (2021)

    Google Scholar 

  17. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  18. Kitronyx. https://www.kitronyx.com/store/p31/. Accessed 14 Apr 2022

  19. Kitronyx. https://www.kitronyx.com/store/p68/Tinn_Force_Touch_Controller.html. Accessed 14 Apr 2022

  20. Kitronyx. http://sites.kitronyx.com/wiki/applications/snowforce-3. Accessed 14 Apr 2022

  21. Lele, P., Sinclair, D., Weddell, G.: The reaction time to touch. J. Physiol. 123(1), 187 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydar Al Haj Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Haj Ali, H., Gianoglio, C., Ibrahim, A., Valle, M. (2023). Resource-Constrained Implementation of Deep Learning Algorithms for Dynamic Touch Modality Classification. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics