Skip to main content

Feed-Forward SNN for Touch Modality Prediction

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

  • 1224 Accesses

Abstract

Recently, Spiking Neural Networks (SNNs) have been considered as alternatives to the common deep neural networks (DNNs) when the energy efficiency has been targeted. The SNNs adopt an event-driven information processing approach in which the computational expenses are reduced considerably compared to DNNs without affecting the system performance. This paper presents an efficient framework based on SNNs for touch modality classification. The proposed work outperforms similar state of the art solutions by achieving a classification accuracy of 99.97% with decreased complexity and increased number of classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing-from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2009)

    Article  Google Scholar 

  2. VanRullen, R., Guyonneau, R., Thorpe, S.J.: Spike times make sense. Trends Neurosci. 28(1), 1–4 (2005)

    Article  Google Scholar 

  3. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  4. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

    Article  Google Scholar 

  5. Bologna, L.L., Pinoteau, J., Brasselet, R., Maggiali, M., Arleo, A.: Encoding/decoding of first and second order tactile afferents in a neurorobotic application. J. Physiol. Paris 105(1–3), 25–35 (2011)

    Google Scholar 

  6. Gütig, R., Gollisch, T., Sompolinsky, H., Meister, M.: Computing complex visual features with retinal spike times. PLoS ONE 8(1), e53063 (2013)

    Google Scholar 

  7. Nessler, B., Pfeiffer, M., Maass, W.: Stdp enables spiking neurons to detect hidden causes of their inputs. Adv. Neural. Inf. Process. Syst. 22, 1357–1365 (2009)

    Google Scholar 

  8. Legenstein, R., Pecevski, D., Maass, W.: A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput. Biol. 4(10), e1000180 (2008)

    Google Scholar 

  9. Schrauwen, B., D’Haene, M., Verstraeten, D., Van Campenhout, J.: Compact hardware liquid state machines on fpga for real-time speech recognition. Neural Netw. 21(2–3), 511–523 (2008)

    Article  Google Scholar 

  10. Rice, K.L., Bhuiyan, M.A., Taha, T.M., Vutsinas, C.N., Smith, M.C.: Fpga implementation of izhikevich spiking neural networks for character recognition. In: 2009 International Conference on Reconfigurable Computing and FPGAs, pp. 451–456. IEEE (2009)

    Google Scholar 

  11. Gütig, R.: To spike, or when to spike? Curr. Opin. Neurobiol. 25, 134–139 (2014)

    Article  Google Scholar 

  12. Talbot, M., Arvandi, M., Sadeghian, A.: A neural network based surface roughness discrimination algorithm. In: 2008 World Automation Congress, pp. 1–8. IEEE (2008)

    Google Scholar 

  13. Decherchi, S., Gastaldo, P., Dahiya, R.S., Valle, M., Zunino, R.: Tactile-data classification of contact materials using computational intelligence. IEEE Trans. Rob. 27(3), 635–639 (2011)

    Article  Google Scholar 

  14. Dabbous, A., Mastella, M., Natarajan, A., Chicca, E., Valle, M., Bartolozzi, C.: Artificial bio-inspired tactile receptive fields for edge orientation classification. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  15. Kim, J., et al.: Object shape recognition using tactile sensor arrays by a spiking neural network with unsupervised learning. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 178–183. IEEE (2020)

    Google Scholar 

  16. Iwata, H., Sugano, S.: Human-robot-contact-state identification based on tactile recognition. IEEE Trans. Industr. Electron. 52(6), 1468–1477 (2005)

    Article  Google Scholar 

  17. Stiehl, W.D., Breazeal, C.: Applying a “somatic alphabet” approach to inferring orientation, motion, and direction in clusters of force sensing resistors. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 3015–3020. IEEE (2004)

    Google Scholar 

  18. Gianoglio, C., Ragusa, E., Zunino, R., Valle, M.: 1-d convolutional neural networks for touch modalities classification. In: 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1–6. IEEE (2021)

    Google Scholar 

  19. Gianoglio, C., Ragusa, E., Gastaldo, P., Valle, M.: A novel learning strategy for the trade-off between accuracy and computational cost: a touch modalities classification case study. IEEE Sens. J. 22(1), 659–670 (2021)

    Article  Google Scholar 

  20. Sun, J., Billing, E., Seoane, F., Zhou, B., Högberg, D., Hemeren, P.: Categories of touch: classifying human touch using a soft tactile sensor. In: The robotic sense of touch: From sensing to understanding, workshop at the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May 2017 (2017)

    Google Scholar 

  21. Dabbous, A., Ibrahim, A., Valle, M., Bartolozzi, C.: Touch modality classification using spiking neural networks and supervised-stdp learning. In: 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1–4. IEEE

    Google Scholar 

  22. Stimberg, M., Brette, R., Goodman, D.F.: Brian 2, an intuitive and efficient neural simulator. eLife 8, e47314 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Ibrahim or Maurizio Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dabbous, A., Ibrahim, A., Valle, M. (2023). Feed-Forward SNN for Touch Modality Prediction. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics