Skip to main content

Machine Learning Based Reconstruction of Process Forces

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

  • 1196 Accesses

Abstract

During milling, process forces are acting on the cutting tool, causing tool deflection and subsequently a shape deviation of the workpiece. To compensate these effects, knowledge of the process forces is required. In this work, machine learning (ML) methods are applied to reconstruct process forces from the drive signals of two different milling centers. The results of a linear regression, bagged trees and a stacked LSTM are presented. The approaches show different results depending on the milling center. Only for the LSTM an error lower than 30 N is achieved for both machine tools. Independent of the ML approach, the results strongly depend on the selection of milling processes used for training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brecher, C., Wetzel, A., Berners, T., Epple, A.: Increasing productivity of cutting processes by real-time compensation of tool deflection due to process forces. J. Mach. Eng. 19, 16–27 (2019)

    Google Scholar 

  2. Wan, M., Zhang, W.H., Qin, G. H., Wang, Z.P.: Strategies for error prediction and error control in peripheral milling of thin-walled workpiece.  Int. J. Mach. Tools  Manuf. 48(12–13), 1366–1374 (2008)

    Google Scholar 

  3. Denkena, B., Bergmann, B., Stoppel, D.: Tool deflection compensation by drive signal-based force reconstruction and process control. Procedia CIRP 104, 571–575 (2021)

    Article  Google Scholar 

  4. Denkena, B., Boujnah, H.: Feeling machines for online detection and compensation of tool deflection in milling. CIRP Ann. 67(1), 423–426 (2018)

    Article  Google Scholar 

  5. Aslan, D., Altintas, Y.: Prediction of cutting forces in five-axis milling using feed drive current measurements. IEEE/ASME Trans. Mechatron. 23(2), 833–844 (2018)

    Article  Google Scholar 

  6. Wan, M., Yin, W., Zhang, W.H.: Study on the correction of cutting force measurement with table dynamometer. Procedia CIRP 56, 119–123 (2016)

    Article  Google Scholar 

  7. Totis, G., Adams, O., Sortino, M., Veselovac, D., Klocke, F.: Development of an innovative plate dynamometer for advanced milling and drilling applications. Measurement 49, 164–181 (2014)

    Article  Google Scholar 

  8. Rizal, M., Ghani, J.A., Nuawi, M.Z., Haron, C.H.C.: Development and testing of an integrated rotating dynamometer on tool holder for milling process. Mech. Syst. Signal Process. 52, 559–576 (2015)

    Article  Google Scholar 

  9. Sarhan, A.A.D., Matsubara, A., Sugihara, M., Saraie, H., Ibaraki, S., Kakino, Y.: Monitoring method of cutting force by using additional spindle sensors. JSME Int J., Ser. C 49(2), 307–315 (2006)

    Article  Google Scholar 

  10. Albrecht, A., Park, S.S., Altintas, Y., Pritschow, G.: High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors. Int. J. Mach. Tools Manuf 45(9), 993–1008 (2005)

    Article  Google Scholar 

  11. Yamato, S., Kakinuma, Y.: Precompensation of machine dynamics for cutting force estimation based on disturbance observer. CIRP Ann. 69(1), 333–336 (2020)

    Article  Google Scholar 

  12. Altintas, Y.: Prediction of cutting forces and tool breakage in milling from feed drive current measurements (1992)

    Google Scholar 

  13. Kim, T.Y., Woo, J., Shin, D., Kim, J.: Indirect cutting force measurement in multi-axis simultaneous NC milling processes. Int. J. Mach. Tools Manuf 39(11), 1717–1731 (1999)

    Article  Google Scholar 

  14. Schwenzer, M., Auerbach, T., Miura, K., Döbbeler, B., Bergs, T.: Support vector regression to correct motor current of machine tool drives. J. Intell. Manuf. 31(3), 553–560 (2019). https://doi.org/10.1007/s10845-019-01464-1

    Article  Google Scholar 

  15. Denkena, B., Bergmann, B., Stoppel, D.: Reconstruction of process forces in a five-axis milling center with a LSTM neural network in comparison to a model-based approach. J. Manufact. Mater. Process. 4(3), 62 (2020)

    Google Scholar 

  16. Eesa, A.S., Arabo, W.K.: A normalization methods for backpropagation: a comparative study. Sci. J. Univ. Zakho 5(4), 319–323 (2017)

    Article  Google Scholar 

  17. Meinshausen, N., Ridgeway, G.: Quantile regression forests. J. Mach. Learn. Res. 7(6) 983–999 (2006)

    Google Scholar 

  18. Maas, A.L., Hannun, A. Y., Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of Icml, vol.  30 (1), pp. 3–9 (2012)

    Google Scholar 

Download references

Acknowledgements

We thank the “Sieglinde Vollmer Stiftung” for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Stoppel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denkena, B., Klemme, H., Stoppel, D. (2023). Machine Learning Based Reconstruction of Process Forces. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics