Skip to main content

Integrating Electronic Components, Sensors and Actuators in Cast Metal Components: An Overview of the State of the Art

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

Abstract

Despite the fact that specifically in the automotive industry, several safety-relevant components are produced by casting processes, integrating sensors and electronic components in castings has so far received less attention than the production of smart, self-monitoring components made e.g. from fibre-reinforced plastics (FRP), or by means of additive manufacturing techniques. One reason for this apparent scarcity are the harsh conditions to be endured by integrated systems in processes that rely on processing large amounts of metal in the liquid state. Despite such obstacles, a deeper scrutiny of the topic reveals several studies which solve the underlying problem in quite different ways and in view of different application scenarios such as part identification, load monitoring, damage detection or structural health monitoring. The latter aspect, which has received considerable attention in the aerospace industry in the past, is starting to find interest in the automotive sector, too. A major motivation behind this paradigm shift are autonomous drive and car sharing scenarios, which effectively detach the individual driver from its role in observing the state of the vehicle. The present article summarizes the state of the art in the field, discussing potential applications of smart castings, looking at the various casting processes from lost foam, sand and gravity die casting to low and high pressure die casting, as well as looking at the different sensor and electronic systems being studied in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lang, W., et al.: From embedded sensors to sensorial materials – the road to function scale integration. Sens. Actuators, A 171(1), 3–11 (2011)

    Article  Google Scholar 

  2. McEvoy, M.A., Correll, N.: Materials that combine sensing, actuation, computation and communication. Science 347, 1261689 (2015)

    Article  Google Scholar 

  3. Mekid, S., Saheb, N., Khan, S.M.A., Qureshi, K.K.: Towards sensor array materials: can failure be delayed? Sci. Technol. Adv. Mater. 16, 034607 (2015)

    Article  Google Scholar 

  4. Bosse, S., Lehmhus, D., Lang, W., Busse, M. (eds.): Material-Integrated Intelligent Systems – Technology and Applications. Wiley, Hoboken (2018)

    Google Scholar 

  5. Bosse, S., Lehmhus, D.: On concepts and challenges of realizing material‐integrated intelligent systems. In: Bosse, S., Lehmhus, D., Lang, W., Busse, M. (eds.) Material-Integrated Intelligent Systems – Technology and Applications, pp. 1–28. Wiley, Hoboken (2018)

    Google Scholar 

  6. Lehmhus, D., Busse, M.: Structural health monitoring. In: Bosse, S., Lehmhus, D., Lang, W., Busse, M. (eds.) Material-Integrated Intelligent Systems – Technology and Applications, pp. 529–570. Wiley, Hoboken (2018)

    Google Scholar 

  7. Lehmhus, D., et al.: Cloud-based automated design and additive manufacturing: a usage data-enabled paradigm shift. Sensors 15, 32079 (2015)

    Article  Google Scholar 

  8. Altimus, J.C., Johnson, V.D.: Remote identification of metal castings. Trans. Am. Foundrymen’s Soc. 106, 605–608 (1998)

    Google Scholar 

  9. Busse, M., Wöstmann, F.-J., Müller, T., Melz, T., Spies, P.: Intelligente Gussteile - Einsatz adaptronischer Komponenten in Kombination mit Gussteilen. Giesserei 93, 48–53 (2006)

    Google Scholar 

  10. Busse, M., Wöstmann, F.-J., Müller, T., Melz, T., Spies, P.: Intelligente Druckgussteile. Metall 60, 738–741 (2006)

    Google Scholar 

  11. https://www.giesserei-praxis.de/giesserei-lexikon/glossar/giesstemperatur. Accessed 4 May 2022

  12. Kazys, R., Vaskeliene, V.: High temperature ultrasonic transducers: a review. Sensors 21(9), 3200 (2021)

    Article  Google Scholar 

  13. Watson, J., Castro, G.: A review of high-temperature electronics technology and applications. J. Mater. Sci.: Mater. Electron. 26(12), 9226–9235 (2015). https://doi.org/10.1007/s10854-015-3459-4

    Article  Google Scholar 

  14. Amalu, E.H., Ekere, N.N., Bhatti, R.: High temperature electronics: R&D challenges and trends in materials, packaging and interconnection technology. In: Proceedings of the 2nd International Conference on Adaptive Science & Technology (ICAST 2009), Accra, Ghana, 14–16 January 2009. https://doi.org/10.1109/ICASTECH.2009.5409731

  15. Dziedzic, A., Nowak, D.: Thick-film and LTCC passive components for high-temperature electronics. Radioengineering 22, 218–226 (2013)

    Google Scholar 

  16. Bove, T., Damjanovic, D., Liang, K., Wolny, W.: Piezoceramic materials for high-temperature & high-pressure applications in oilfield exploration & production. In: Proceedings of the 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM), Prague, Czech Republic, 21–25 July 2013, pp. 62–65. https://doi.org/10.1109/ISAF.2013.6748669

  17. Zhang, H., Minter, J., Lee, N.-C.: A brief review on high-temperature, Pb-free die-attach materials. J. Electron. Mater. 48, 201–210 (2019)

    Article  Google Scholar 

  18. Zhou, Z., Cui, J., Yu, F., Johnson, R.W., Hamilton, M.C.: Evaluation of thick-film materials for high-temperature packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 8, 773–783 (2018)

    Article  Google Scholar 

  19. Zhou, Z., Johnson, R.W., Hamilton, M.C.: Mechanical reliability of thick films for high-temperature packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 8, 1003–1013 (2018)

    Article  Google Scholar 

  20. Heraeus Product Brochure. Heraeus Celcion—Materials System for LED Circuits. https://www.heraeus.com/media/media/het/doc_het/products_and_solutions_het_documents/thick_film/Brochure_Heraeus_Celcion_-_Materials_System_for_LED_Circuits.pdf. Accessed 4 May 2022

  21. Tiedemann, R., Fischer, M., Busse, M., Lang, W.: Integrating sensors into castings made of aluminum - new approaches for direct sensor integration in gravity die casting. Procedia Manuf. 24, 179–184 (2018). https://doi.org/10.1016/j.promfg.2018.06.042

    Article  Google Scholar 

  22. Weraneck, K., et al.: Strain measurement in aluminium alloy during the solidification process using embedded fibre Bragg gratings. Sensors 16, 1853 (2016)

    Article  Google Scholar 

  23. Lindner, M., et al.: Regenerated Bragg grating sensor array for temperature measurements during an aluminum casting process. IEEE Sens. J. 18, 5352–5360 (2018)

    Article  Google Scholar 

  24. Polz, L., Dutz, F.J., Maier, R.R.J., Bartelt, H., Roths, J.: Regenerated fibre Bragg gratings: a critical assessment of more than 20 years of investigations. Opt. Laser Technol. 134, 106650 (2021)

    Article  Google Scholar 

  25. Bian, Q., Bauer, C., Stadler, A., Jakobi, A., Koch, A.W., Roths, J.: Multipoint temperature monitoring based on a regenerated fiber bragg grating temperature sensor array in copper casting. In: Proceedings of SPIE 11591, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2021, 115910U, 22 March 2021. https://doi.org/10.1117/12.2588600

  26. Heilmeier, F., et al.: In-situ strain measurements in the plastic deformation regime inside casted parts using fibre-optical strain sensors. Prod. Eng. Res. Devel. 13(3–4), 351–360 (2019). https://doi.org/10.1007/s11740-019-00874-7

    Article  Google Scholar 

  27. Lindner, M., et al.: Fiber Bragg sensors embedded in cast aluminum parts: axial strain and temperature response. Sensors 21, 1680 (2021)

    Article  Google Scholar 

  28. Carlsson, R., et al.: Sensors integrated inside metal castings verified to respond to force. In: Proceedings of the 9th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2019), Paris, France, 8–11 July 2019

    Google Scholar 

  29. Pille, C.: In-process embedding of piezo sensors and RFID transponders into cast parts for autonomous manufacturing logistics. In: Proceedings of Smart Systems Integration 2010, Como, Italy, 23–24 March 2010

    Google Scholar 

  30. Hribernik, K.A., Pille, C., Jeken, O., Thoben, K.-D., Windt, K., Busse, M.: Autonomous control of intelligent products in beginning of life processes. In: Proceedings of the International Conference on Product Life Cycle Management, Bremen, Germany, 12–14 July 2010

    Google Scholar 

  31. Bonollo, F., Gramegna, N.: The MUSIC guide to the key-parameters in High Pressure Die Casting. Assomet servizi srl, Enginsoft SpA (2014). ISBN 978-8887786-10-1

    Google Scholar 

  32. Peiner, E., Tibrewala, A., Lüthje, H., Bandorf, R., Biehl, S., Doering, L.: Piezoresistive diamond-like carbon micro strain gauges. In: Proceedings of the XVIII IMEKO World Congress – Metrology for a Sustainable Development; Rio de Janeiro, Brazil, 17–22 September 2006

    Google Scholar 

  33. Bräuer, G., Bandorf, R., Biehl, S., Dietz, A., Lüthje, H., Vergöhl, M.: Smart coatings for intelligent surfaces. VIP Vacuum’s Best 20(S1), 34–37 (2008)

    Google Scholar 

  34. Pille, C., Biehl, S., Busse, M.: Encapsulating piezoresistive thin film sensors based on amorphous diamond-like carbon in aluminium castings. In: Proceedings of the 1st Joint International Symposium on System Integrated Intelligence, Hanover, Germany, 27–29 June 2012, pp. 192–194 (2012)

    Google Scholar 

  35. Tiedemann, R., Pille, C., Dumstorff, G., Lang, W.: Sensor integration in castings made of aluminum - new approaches for direct sensor integration in aluminum high pressure die casting. Key Eng. Mater. 742, 786–792 (2017)

    Article  Google Scholar 

  36. Mayer, D., Melz, T., Pille, C., Woestmann, F.-J.: CASTRONICS - direct integration of piezo ceramic materials in high pressure die casting parts for vibration control. In Proceedings of Actuator 2008, 11th International Conference on New Actuators & 5th International Exhibition on Smart Actuators and Drive Systems, Bremen, Germany, 9–11 June 2008

    Google Scholar 

  37. Bewilogua, K., Bialuch, I., Ruske, H., Weigel, K.: Preparation of a-C:H/a-C:H:Si: O and a-C:H/a-C:H: Si multilayer coatings by PACVD. Surf. Coat. Technol. 206, 623–629 (2011)

    Article  Google Scholar 

  38. Ibragimov, A., Pleteit, H., Pille, C., Lang, W.: Micromachined thermogenerator directly integrated into metal parts: technological aspects of the embedding process. In: Proceedings of the 1st Joint International Symposium on System-Integrated Intelligence, Hanover, Germany, 27–29 June 2012, pp. 204–207 (2012)

    Google Scholar 

  39. Ibragimov, A., et al.: A thermoelectric energy harvester directly embedded into casted aluminum. IEEE Electron Device Lett. 33(2), 233–235 (2012)

    Article  Google Scholar 

  40. Bräutigam, V., Schellack, T., Körner, C., Singer, R.F.: Optimized fixing technique for the integration of piezoceramic modules in die castings. Giessereiforschung 58, 11–15 (2006)

    Google Scholar 

  41. Rübner, M., Körner, C., Singer, R.F.: Integration of piezoceramic modules into die castings – procedure and functionalities. In: Advances in Science and Technology, vol. 56, pp. 170–175 (2008)

    Google Scholar 

  42. Flössel, M., Scheithauer, U., Gebhardt, S., Schönecker, A., Michaelis, A.: Robust LTCC/PZT sensor-actuator module for aluminium die casting. In: Proceedings of the 2009 European Microelectronics and Packaging Conference, Rimini, Italy, 15–18 June 2009. https://ieeexplore.ieee.org/abstract/document/5272855

  43. Klassen, A., et al.: Influence of the fabrication process on the functionality of piezoceramic patch transducers embedded in aluminum die castings. Smart Mater. Struct. 21, 115014 (2012)

    Article  Google Scholar 

  44. Schwankl, M., et al.: Active functionality of piezoceramic modules integrated in aluminum high pressure die castings. Sens. Actuators, A 207, 84–90 (2014)

    Article  Google Scholar 

  45. Schwankl, M., Kimme, S., Pohle, C., Drossel, W.-G., Körner, C.: Active vibration damping in structural aluminum die castings via piezoelectricity – technology and characterization. Adv. Eng. Mater. 17, 969–975 (2015)

    Article  Google Scholar 

  46. Stein, S., et al.: A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures. Results Phys. 7, 2534–2539 (2017)

    Article  Google Scholar 

  47. Isaza-Paz, J., Wilbig, J., Aumund-Kopp, C., Petzoldt, F.: RFID transponder integration in metal surgical instruments produced by additive manufacturing. Powder Metall. 57, 365–372 (2014)

    Article  Google Scholar 

  48. Lehmhus, D., et al.: Customized smartness: a survey on links between additive manufacturing and sensor integration. Procedia Technol. 26, 284–301 (2016)

    Article  Google Scholar 

  49. Hehr, A., et al.: Integrating fiber optic strain sensors into metal using ultrasonic additive manufacturing. JOM 70(3), 315–320 (2017). https://doi.org/10.1007/s11837-017-2709-8

    Article  Google Scholar 

  50. Monaghan, T., Capel, A.J., Christie, S.D., Harris, R.A., Friel, R.J.: Solid-state additive manufacturing for metallized optical fiber integration. Compos. Part A 76, 181–193 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Lehmhus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmhus, D., Rahn, T., Pille, C., Busse, M. (2023). Integrating Electronic Components, Sensors and Actuators in Cast Metal Components: An Overview of the State of the Art. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics