Skip to main content

Time Reduction in Online Programming – An Approach to Hand Guided Teaching for Small Batch Robot Machining

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

  • 1186 Accesses

Abstract

In contrast to the shortage of skilled workers and the resulting need to use their capabilities as effectively as possible, repetitive tasks are still performed by hand when it comes to small batches up to one-off, especially in smaller or medium sized enterprises. Reasons, for example, are the lack of programming and automation solutions with which simple tasks can be easily and in no time teached onto a robotic application. One of the fastest possibilities of online-teaching robots without programming is hand-guiding. Provided mainly for human robot collaboration most of the suitable cobots have a restricted payload. This leads to a very limited field of application regarding machining or the handling of heavy weight tools. In contrast high-load industrial robots are very common for large-series machining, but the necessary knowledge and programming effort currently prevent the use for quickly changing tasks.

This paper presents an approach, which reduces the time for online teaching of industrial robot machining. An equipped hand guidance and additional force sensors enable the user to perform the machining operation by handling the workpiece or tool as usual and records the resulting process paths and forces for teaching. Combined with a simple graphical interface for the necessary user-input the solution is empowered to repeat the recorded machining operation according to the current setup autonomously. With a target-actual comparison of the resulting forces the automatic process can be monitored. With this holistic approach the solution is suitable either for handling tasks, common machining and part-to-tool machining on external tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Javaid, M., Haleem, A., Singh, R.P., Suman, R.: Substantial capabilities of robotics in enhancing Industry 4.0 implementation. Cogn. Robot. 1, 58 (2021)

    Article  Google Scholar 

  2. Wang, B., Tao, F., Fang, X., Liu, C., et al.: Smart manufacturing and intelligent manufacturing: a comparative review. Engineering 7, 738 (2021)

    Article  Google Scholar 

  3. International Federation of Robotics IFR: World Robotics 2020

    Google Scholar 

  4. Brunello, G., Wruuck, P.: Skill shortages and skill mismatch in europe: a review of the literature, 12346 (2019)

    Google Scholar 

  5. Bundesagentur für Arbeit: Fachkräfteengpassanalyse 2019, Nürnberg, Germany (2020)

    Google Scholar 

  6. Heimann, O., Guhl, J.: Industrial robot programming methods: a scoping review. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), p. 696. IEEE (2020)

    Google Scholar 

  7. Dean-Leon, E., Ramirez-Amaro, K., Bergner, F., Dianov, I., et al.: Integration of robotic technologies for rapidly deployable robots. IEEE Trans. Ind. Inform. 14, 1691 (2018)

    Article  Google Scholar 

  8. Berg, J., Lu, S.: Review of Interfaces for Industrial Human-Robot Interaction. Current Robot. Rep. 1(2), 27–34 (2020). https://doi.org/10.1007/s43154-020-00005-6

    Article  Google Scholar 

  9. Bravo, F.A., Gonzalez, A.M., Gonzalez, E.: A review of intuitive robot programming environments for educational purposes. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC): Conference Proceedings, Cartagena, Colombia, 18–20 October 2017, p. 1. IEEE, Piscataway (2017)

    Google Scholar 

  10. Mariscal Saldana, M.Á., González-Pérez, J., Khalid, A., Gutiérrez Llorente, J.M., et al.: Risks management and cobots. Identifying critical variables. In: Proceedings of the 29th European Safety and Reliability Conference (ESREL), p. 1834. Research Publishing Services, Singapore (2019)

    Google Scholar 

  11. Ayari, O., Bouali, A., Méausoone, P.-J.: Cutting forces and accuracy characterization during wood machining with serial robots. Eur. J. Wood Wood Prod. 78(4), 767–775 (2020). https://doi.org/10.1007/s00107-020-01539-4

    Article  Google Scholar 

  12. Koch, J.: Der eiserne Kollege: Tischlermeister Axel Eigenstetter arbeitet mit einem Fünf-Achs-Industrieroboter von Kuka. https://www.bm-online.de/praxis-und-kollegentipps/zu-gast-beim-kollegen/der-eiserne-kollege/. Accessed 9 Dec 2020

  13. Stepputat, M., Beuss, F., Pfletscher, U., Sender, J., et al.: Automated one-off production in woodworking by Part-to-Tool. Procedia CIRP 104, 307 (2021)

    Article  Google Scholar 

  14. Dryba, S., Meißner, J., Wanner, M.-C., Wurst, O.: Hochpräzises Bearbeiten von Schiffspropellern: high-precision machining of very large ship propellers. Procedia CIRP 107, 182 (2017)

    Google Scholar 

  15. Brunete, A., Gambao, E., Koskinen, J., Heikkilä, T., et al.: Hard material small-batch industrial machining robot. Robot. Comput. Integr. Manuf. 54, 185 (2018)

    Article  Google Scholar 

  16. Leal-Muñoz, E., Diez, E., Marquez, J., Vizan, A.: Feasibility of machining using low payload robots. Procedia Manuf. 41, 594 (2019)

    Article  Google Scholar 

  17. Rileys Surface World: INTEC - ABB IRB 2400 ROBOTIC FINISHING CELL. https://www.rileysurfaceworld.co.uk/live/machines2/25800.pdf. Accessed 9 Dec 2020

  18. Song, Y., Chen, Y.H.: Feature-based robot machining for rapid prototyping. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 213, 451 (1999)

    Article  Google Scholar 

  19. Xiong, G., Ding, Y., Zhu, L.: Stiffness-based pose optimization of an industrial robot for five-axis milling. Robot. Comput. Integr. Manuf. 55, 19 (2019)

    Article  Google Scholar 

  20. Ferreras-Higuero, E., Leal-Muñoz, E., García de Jalón, J., Chacón, E., et al.: Robot-process precision modelling for the improvement of productivity in flexible manufacturing cells. Robot. Comput. Integr. Manuf. 65, 101966 (2020)

    Article  Google Scholar 

  21. Brunete, A., Mateo, C., Gambao, E., Hernando, M., et al.: User-friendly task level programming based on an online walk-through teaching approach. Ind. Robot Int. J. 43, 153 (2016)

    Article  Google Scholar 

  22. Steinmetz, F., Wollschlager, A., Weitschat, R.: RAZER—a HRI for visual task-level programming and intuitive skill parameterization. IEEE Robot. Autom. Lett. 3, 1362 (2018)

    Article  Google Scholar 

  23. Biggs, G., MacDonald, B.: A survey of robot programming systems, in Proceedings of the Australasian conference on robotics and automation, p. 27 (2003)

    Google Scholar 

  24. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1371–1394. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_60

    Chapter  Google Scholar 

  25. Fujii, M., Murakami, H., Sonehara, M.: Study on application of a human-robot collaborative system using hand-guiding in a production line. IHI Eng. Rev. 49, 24 (2016)

    Google Scholar 

  26. Gopinath, V., Ore, F., Johansen, K.: Safe assembly cell layout through risk assessment – an application with hand guided industrial robot. Procedia CIRP 63, 430 (2017)

    Article  Google Scholar 

  27. KUKA Ready2Pilot. https://www.kuka.com/en-de/products/robot-systems/ready2_use/kuka-ready2_pilot. Accessed 16 Dec 2021

  28. Homepage Wandelbots. https://wandelbots.com/en/roboterprogrammierung/. Accessed 16 Dec 2021

  29. Gustavsson, P., Holm, M., Syberfeldt, A., Wang, L.: Human-robot collaboration – towards new metrics for selection of communication technologies. Procedia CIRP. 72, 123 (2018)

    Article  Google Scholar 

  30. Gregor, R., Babinec, A., Duchoň, F., Dobiš, M.: Hand guiding a virtual robot using a force sensor. Acta Mechanica et Automatica 15, 177 (2021)

    Article  Google Scholar 

  31. Schmatz, F., Neumann, S., Sender, J., Flügge, W., Meschut, G.: Qualitätsoptimierung im mechanischen Fügen durch Einsatz von Mensch-Roboter-Kollaboration, Stuttgart (2020)

    Google Scholar 

  32. DIN EN ISO 10218-1:2012-01, Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots (ISO 10218-1:2011); German version EN ISO 10218-1:2011. Beuth Verlag GmbH, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten Stepputat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stepputat, M., Beuss, F., Sender, J., Fluegge, W. (2023). Time Reduction in Online Programming – An Approach to Hand Guided Teaching for Small Batch Robot Machining. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics