Skip to main content

Intelligent Method for Forming the Consumer Basket

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2022)

Abstract

Authors developed an intelligent method of forming a consumer basket based on data from supermarket chains, which allows modifying the set of goods in the consumer basket and defining a living wage. The consumer basket is forming on a base of k-means clustering approach. The algorithmic structure of the proposed method is described. Experimental research is carried out using the Customer Personality Analysis dataset from the Kaggle platform. After data normalization and clustering, the clusters relative to the amount (USD) of purchased goods for 2 years were analyzed. As a result, the cluster (consumer basket) was selected which includes 27% of middle-aged customers of various ages and counts such goods as fish, meat, sweets, wine and equipment. The novelty of the paper is the automated and intelligent forming the set of goods in the consumer basket, which may promote survival during humanitarian and economic disasters, especially in times of economic crisis (war, pandemic).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kapała, A.M.: Legal instruments to support short food supply chains and local food systems in France. Laws 11(2), 21 (2022). https://doi.org/10.3390/laws11020021

    Article  Google Scholar 

  2. Govindasamy, R.: Cluster analysis of wine market segmentation – a consumer based study in the mid-Atlantic USA. Econ. Aff. 63(1), 151–157 (2018)

    Google Scholar 

  3. Qisman, M., Rosadi, R., Abdullah, A.S.: Market basket analysis using apriori algorithm to find consumer patterns in buying goods through transaction data (case study of Mizan computer retail stores). In: Journal of Physics: Conference Series. IOP Publishing, vol. 1722 no. 1, p. 012020 (2021). https://doi.org/10.1088/1742-6596/1722/1/012020

  4. Tatiana, K., Mikhail, M.: Market basket analysis of heterogeneous data sources for recommendation system improvement. Procedia Comput. Sci. 136, 246–254 (2018). https://doi.org/10.1016/j.procs.2018.08.263

    Article  Google Scholar 

  5. Sun, Q., Gao, X., Wang, Z., Liu, S., Guo, S., Li, Y.: Quantifying the risk of price fluctuations based on weighted granger causality networks of consumer price indices: evidence from G7 countries. J. Econ. Interac. Coord. 15(4), 821–844 (2019). https://doi.org/10.1007/s11403-019-00273-2

    Article  Google Scholar 

  6. Sarantitis, G.A., Papadimitriou, T., Gogas, P.: A network analysis of the United Kingdom’s consumer price index. Comput. Econ. 51(2), 173–193 (2016). https://doi.org/10.1007/s10614-016-9625-9

    Article  Google Scholar 

  7. Rathnayaka, S.D., Selvanathan, E.A., Selvanathan, S.: Modelling the consumption patterns in the Asian countries. Econ. Anal. Policy 74, 277–296 (2022). https://doi.org/10.1016/j.eap.2022.02.004

    Article  Google Scholar 

  8. Peixoto, V., Peixoto, H., Machado, J.: Integrating a data mining engine into recommender systems. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds.) IDEAL 2020. LNCS, vol. 12489, pp. 209–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62362-3_19

    Chapter  Google Scholar 

  9. Dogan, O., Hiziroglu, A., Seymen, O.F.: Segmentation of retail consumers with soft clustering approach. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 39–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_6

    Chapter  Google Scholar 

  10. Chiang, L.L.L., Yang, C.S.: Does country-of-origin brand personality generate retail customer lifetime value? A big data analytics approach. Technol. Forecast. Soc. Change 130, 177–187 (2018). https://doi.org/10.1016/j.techfore.2017.06.034

    Article  Google Scholar 

  11. Munusamy, S., Murugesan, P.: Modified dynamic fuzzy c-means clustering algorithm – application in dynamic customer segmentation. Appl. Intell. 50(6), 1922–1942 (2020). https://doi.org/10.1007/s10489-019-01626-x

    Article  Google Scholar 

  12. Arunachalam, D., Kumar, N.: Benefit-based consumer segmentation and performance evaluation of clustering approaches: an evidence of data-driven decision-making. Expert Syst. Appl. 111, 11–34 (2018). https://doi.org/10.1016/j.eswa.2018.03.007

    Article  Google Scholar 

  13. Anitha, P., Patil, M.M.: RFM model for customer purchase behavior using k-means algorithm. J. King Saud Uni. – Comput. Inform. Sci. 34(5), 1785–1792 (2022). https://doi.org/10.1016/j.jksuci.2019.12.011

    Article  Google Scholar 

  14. Lipyanina, H., Sachenko, A., Lendyuk, T., Nadvynychny, S., & Grodskyi, S.: Decision tree based targeting model of customer interaction with business page. In: Proceedings of the third International Workshop on Computer Modeling and Intelligent Systems (CMIS-2020), CEUR Workshop Proceedings, (2608), pp. 1001–1012 (2020). Electronic copy at: http://ceur-ws.org/Vol-2608/paper75.pdf

  15. Kanavos, A., Iakovou, S.A., Sioutas, S., Tampakas, V.: Large scale product recommendation of supermarket ware based on customer behaviour analysis. Big Data Cogn. Comput. 2(2), 11 (2018). https://doi.org/10.3390/bdcc2020011

    Article  Google Scholar 

  16. Alam, M.F., Singh, R., Katiyar, S.: Customer segmentation using k-means clustering in unsupervised machine learning. In: Proceedings of the 2021 3rd IEEE International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pp. 94–98 (2021). https://doi.org/10.1109/ICAC3N53548.2021.9725644

  17. Sinaga, K.P., Yang, M.: Unsupervised k-means clustering algorithm. IEEE Access 8, 80716–80727 (2020). https://doi.org/10.1109/ACCESS.2020.2988796

    Article  Google Scholar 

  18. Customer Personality Analysis. Kaggle: Your Machine Learning and Data Science Community. https://www.kaggle.com/datasets/imakash3011/customer-personality-analysis. Accessed 10 Apr 2022

  19. Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets. Appl. Intell. 48(12), 4743–4759 (2018). https://doi.org/10.1007/s10489-018-1238-7

    Article  MATH  Google Scholar 

  20. Marutho, D., Hendra Handaka, S., Wijaya, E., Muljono: The determination of cluster number at k-mean using elbow method and purity evaluation on headline news. In: Proceedings of the 2018 IEEE International Seminar on Application for Technology of Information and Communication, pp. 533–538 (2018). https://doi.org/10.1109/ISEMANTIC.2018.8549751

  21. Roy, S.K., Singh, G., Hope, M., Nguyen, B., Harrigan, P.: The rise of smart consumers: role of smart servicescape and smart consumer experience co-creation. J. Mark. Manag. 35(15–16), 1480–1513 (2019). https://doi.org/10.1080/0267257X.2019.1680569

    Article  Google Scholar 

  22. Bradlow, E.T., Gangwar, M., Kopalle, P., Voleti, S.: The role of big data and predictive analytics in retailing. J. Retail. 93(1), 79–95 (2017). https://doi.org/10.1016/j.jretai.2016.12.004

    Article  Google Scholar 

  23. Pantano, E.: The role of smart technologies in decision making: developing, supporting and training smart consumers. J. Mark. Manag. 35(15–16), 1367–1369 (2019). https://doi.org/10.1080/0267257X.2019.1688927

    Article  Google Scholar 

  24. Komar, M., Golovko, V., Sachenko, A., Bezobrazov, S.: Development of neural network immune detectors for computer attacks recognition and classification. In: Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), pp. 665–668 (2013). https://doi.org/10.1109/IDAACS.2013.6663008

  25. Hu, Z., Bodyanskiy, Y.V., Kulishova, N.Y., Tyshchenko, O.K.: A multidimensional extended neo-fuzzy neuron for facial expression recognition. Int. J. Intell. Syst. Appl. (IJISA) 9(9), 29–36 (2017). https://doi.org/10.5815/ijisa.2017.09.04

  26. Turchenko, V., Chalmers, E., Luczak, A.: A deep convolutional auto-encoder with pooling – unpooling layers in Caffe. Int. J. Comput. (18), 8--31 (2019). https://doi.org/10.47839/ijc.18.1.1270.

  27. Lipyanina, H., Sachenko, S., Lendyuk, T., Brych, V., Yatskiv, V., Osolinskiy, O.: Method of detecting a fictitious company on the machine learning base. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2021. LNDECT, vol. 83, pp. 138–146. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80472-5_12

    Chapter  Google Scholar 

  28. Lipyanina-Goncharenko, H., Brych, V., Sachenko, S., Lendyuk, T., Bykovyy, P., Zahorodnia, D.: Method of forming a training sample for segmentation of tender organizers on machine learning basis. In: Proceedings of the 5th International Conference on Computational Linguistics and Intelligent Systems (COLINS 2021), Volume I: Main Conference, Lviv, Ukraine, 22–23 April 2021, CEUR Workshop Proceedings, 2870, pp. 1843–1852 (2021). http://ceur-ws.org/Vol-2870/paper134.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Lendiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lipianina-Honcharenko, K., Wolff, C., Chyzhovska, Z., Sachenko, A., Lendiuk, T., Grodskyi, S. (2022). Intelligent Method for Forming the Consumer Basket. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16302-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16301-2

  • Online ISBN: 978-3-031-16302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics