Abstract
Widespread use of cloud computing resources calls for reliable network connections, while anomalies in network traffic impact the availability of cloud resources in a negative way. Anomaly detection tools are essential for identifying and forecasting these network anomalies. In recent years machine learning methods are gaining popularity in implementations of anomaly detection tools. Given the variety of network anomaly types and the availability of diverse machine learning algorithms, developers of anomaly detection software and administrators of cloud infrastructures are presented with a wide range of possible solutions.
This article presents a survey of the most popular machine learning methods that are applicable to detecting anomalies in cloud networks. In order to be able to classify and compare these methods, six major criteria (training approach, training time, preferred areas of application, discovery of unprecedented anomalies, dataset’s influence on anomaly prediction and problem of vanishing or exploding gradient) are discerned and discussed in detail, providing their implications on the evaluated methods. Subsequently, the criteria are used to review the features of the main machine learning methods for anomaly detection and to provide insights about using the methods to identify abnormal network behavior.
The last part of the study lists the examined machine learning methods and appropriate tools for anomaly monitoring and detection. The provided lists are then used to draw final conclusions that provide the recommendations for employing the aforementioned algorithms and tools in various cases of anomaly detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kumar, R., Goyal, R.: On cloud security requirements, threats, vulnerabilities and countermeasures: a survey. Comput. Sci. Rev. 33, 1–48 (2019). https://doi.org/10.1016/j.cosrev.2019.05.002
Dang, L.M., Piran, Md.J., Han, D., Min, K., Moon, H.: A survey on internet of things and cloud computing for healthcare. Electronics 8(7), art. 768 (2019). https://doi.org/10.3390/electronics8070768
Priyanka, E.B., Thangavel, S.: Influence of internet of things (IoT) in association of data mining towards the development smart cities-a review analysis. J. Eng. Sci. Technol. Rev. 13(4), 1–21 (2020)
Pajouha, H.H., Dehghantanhaa, A., Parizib, R.M., Aledharib, M., Karimipour, H.: A survey on internet of things security: requirements, challenges, and solutions. Internet Things 14, art. 100129 (2021). https://doi.org/10.1016/j.iot.2019.100129
Bagchi, S., et al.: New frontiers in IoT: networking, systems, reliability, and security challenges. IEEE Internet Things J. 7(12), 11330–11346 (2020)
Tabrizchi, H., Kuchaki Rafsanjani, M.: A survey on security challenges in cloud computing: issues, threats, and solutions. J. Supercomput. 76(12), 9493–9532 (2020). https://doi.org/10.1007/s11227-020-03213-1
Du, M.: Application of information communication network security management and control based on big data technology. Int. J. Commun. Syst. 35(5), art. 4643 (2022). https://doi.org/10.1002/dac.4643
Clemm, A., Zhani, M.F., Boutaba, R.: Network management 2030: operations and control of network 2030 services. J. Netw. Syst. Manage. 28(4), 721–750 (2020). https://doi.org/10.1007/s10922-020-09517-0
Arzo, S.T., Naiga, C., Granelli, F., Bassoli, R., Devetsikiotis, M., Fitzek, F.H.P.: A theoretical discussion and survey of network automation for IoT: challenges and opportunity. IEEE Internet Things J. 8(15), 12021–12045 (2021)
Javed, F., Afzal, M.K., Sharif, M., Kim, B.-S.: Internet of things (IoT) operating systems support, networking technologies, applications, and challenges: a comparative review. IEEE Commun. Surv. Tutor. 20(3), 2062–2100 (2018)
Yu, F.R.: From information networking to intelligence networking: motivations, scenarios, and challenges. IEEE Netw. 35(6), 209–216 (2021)
Imran, Ghaffar, Z., Alshahrani, A., Fayaz, M., Alghamdi, A.M., Gwak, J.: A topical review on machine learning, software defined networking, internet of things applications: research limitations and challenges. Electronics 10(8), art. 880 (2021). https://doi.org/10.3390/electronics10080880
Santos, L., Gonçalves, R., Rabada, C., Martins, J.: A flow-based intrusion detection framework for internet of things networks. Cluster Comput. 1–21 (2021). http://hdl.handle.net/10198/23813
Hagemann, T., Katsarou, K.: A systematic review on anomaly detection for cloud computing environments. In: 3rd Artificial Intelligence and Cloud Computing Conference (AICCC 2020), pp. 83–96, December 2020. https://doi.org/10.1145/3442536.3442550
Fernandes, G., Rodrigues, J.J.P.C., Carvalho, L.F., Al-Muhtadi, J.F., Proença, M.L.: A comprehensive survey on network anomaly detection. Telecommun. Syst. 70(3), 447–489 (2018). https://doi.org/10.1007/s11235-018-0475-8
Jayathilaka, H., Krintz, C., Wolski, R.: Detecting performance anomalies in cloud platform applications. IEEE Trans. Cloud Comput. 8, 764–777 (2020)
Shi, Y., Miao, K.: Detecting anomalies in application performance management system with machine learning algorithms. In: 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 1797–1800 (2020)
Baril, X., Coustié, O., Mothe, J., Teste, O.: Application performance anomaly detection with LSTM on temporal irregularities in logs. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM 2020), pp. 1961–1964, October 2020. https://doi.org/10.1145/3340531.3412157
Jyothsana, L.P., Anushya, E., Kumari, S.S.: An anomaly-based approach for intrusion detection in web traffic. Int. J. Adv. Res. Basic Eng. Sci. Technol. (IJARBEST) 3(Special Issue), 360–367 (2017)
Tama, B.A., Nkenyereye, L., Islam, S.M.R., Kwak, K.-S.: An enhanced anomaly detection in web traffic using a stack of classifier ensemble. IEEE Access 8, 24120–24134 (2020)
Fotiadou, K., Velivassaki, T.-H., Voulkidis, A., Skias, D., Tsekeridou, S., Zahariadis, T.: Network traffic anomaly detection via deep learning. Information 12(5), art. 215 (2021)
Alshammari, A., Aldribi, A.: Apply machine learning techniques to detect malicious network traffic in cloud computing. J. Big Data 8(1), 1–24 (2021). https://doi.org/10.1186/s40537-021-00475-1
Ergen, T., Kozat, S.S.: Unsupervised anomaly detection with LSTM neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 3127–3141 (2020)
Pu, G., Wang, L., Shen, J., Dong, F.: A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol. 26(2), 146–153 (2021). https://doi.org/10.26599/TST.2019.9010051
Uddin, S., Khan, A., Hossain, M., et al.: Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19, 281 (2019). https://doi.org/10.1186/s12911-019-1004-8
Hagemann, T., Katsarou, K.: A systematic review on anomaly detection for cloud computing environments. In: 2020 3rd Artificial Intelligence and Cloud Computing Conference (AICCC 2020), pp. 83–96. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3442536.3442550
Ciriano, I.C., Bender, A., Malliavin, T.E.: Comparing the influence of simulated experimental errors on 12 machine learning algorithms in bioactivity modeling using 12 diverse data sets. J. Chem. Inf. Model. 55(7), 1413–1425 (2015). https://doi.org/10.1021/acs.jcim.5b00101
Ribeiro, A.H., Tiels, K., Aguirre, L.A., Schön, T.: Beyond exploding and vanishing gradients: analysing RNN training using attractors and smoothness, vol. 108, pp. 2370–2380 (2020). https://proceedings.mlr.press/v108/ribeiro20a.html
Aouedi, O., Piamrat, K., Bagadthey, D.: A semi-supervised stacked autoencoder approach for network traffic classification. In: 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–6 (2020). https://doi.org/10.1109/ICNP49622.2020.9259390
Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., Aljaaf, A.J.: A systematic review on supervised and unsupervised machine learning algorithms for data science. In: Berry, M.W., Mohamed, A., Yap, B.W. (eds.) Supervised and Unsupervised Learning for Data Science. USL, pp. 3–21. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22475-2_1
Abdallah, M., Khac, N.A.L., Jahromi, H., Delia Jurcut, A.: A hybrid CNN-LSTM based approach for anomaly detection systems in SDNs. In: The 16th International Conference on Availability, Reliability and Security (ARES 2021), pp. 1–7. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3465481.3469190. Article 34
Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., Imran, M.: Real-time big data processing for anomaly detection: a survey (2019). https://doi.org/10.1016/j.ijinfomgt.2018.08.006
Haji, S., Ameen, S.: Attack and anomaly detection in IoT networks using machine learning techniques: a review. Asian J. Res. Comput. Sci. 9, 30–46 (2021). https://doi.org/10.9734/ajrcos/2021/v9i230218
Hwang, R.-H., Peng, M.-C., Huang, C.-W., Lin, P.-C., Nguyen, V.-L.: An unsupervised deep learning model for early network traffic anomaly detection. IEEE Access 8, 30387–30399 (2020). https://doi.org/10.1109/ACCESS.2020.2973023
Farzad, A., Gulliver, T.A.: Unsupervised log message anomaly detection (2020). https://doi.org/10.1016/j.icte.2020.06.003
Lesouple, J., Baudoin, C., Spigai, M., Tourneret, J.Y.: Generalized isolation forest for anomaly detection (2021). https://doi.org/10.1016/j.patrec.2021.05.022
Eltanbouly, S., Bashendy, M., AlNaimi, N., Chkirbene, Z., Erbad, A.: Machine learning techniques for network anomaly detection: a survey. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 156–162 (2020). https://doi.org/10.1109/ICIoT48696.2020.9089465
Roodschild, M., Gotay Sardiñas, J., Will, A.: A new approach for the vanishing gradient problem on sigmoid activation. Progr. Artif. Intell. 9(4), 351–360 (2020). https://doi.org/10.1007/s13748-020-00218-y
Girish, L., Rao, S.K.N.: Anomaly detection in cloud environment using artificial intelligence techniques. Computing (2021). https://doi.org/10.1007/s00607-021-00941-x
Alrashdi, I., Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., Ming, H.: AD-IoT: anomaly detection of IoT cyberattacks in smart city using machine learning. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0305–0310 (2019). https://doi.org/10.1109/CCWC.2019.8666450
Biradar, K., Gupta, A., Mandal, M., Vipparthi, S.: Challenges in time-stamp aware anomaly detection in traffic videos (2019). https://doi.org/10.48550/arXiv.1906.04574
Boranbayev, S.N., Kuanyshev, D.D.: Network traffic analysis tools. Eurasian Union Sci. (EUS) 12(81), 35–38 (2020)
Liu, J., Qu, C., Zhou, T.: Design and implementation of cloud computing platform monitoring system based on nagios. In: Huang, C., Chan, Y.-W., Yen, N. (eds.) 2020 International Conference on Data Processing Techniques and Applications for Cyber-Physical Systems. AISC, vol. 1379, pp. 1473–1478. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1726-3_191
Basu, A., Singh, R., Yu, C., Prasad, A., Banerjee, K.: Designing, developing and deploying an enterprise scale network monitoring system. In: ISEC 2022: 15th Innovations in Software Engineering Conference, Article No. 18, pp. 1–5, February 2022. https://doi.org/10.1145/3511430.3511446
Fournier, G., Afchain, S., Baubeau, S.: Runtime security monitoring with eBPF (2021)
Birundha, S., Grace, R.K., Jeyaram, T.: Network monitoring and analysis. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1400–1403 (2021). https://doi.org/10.1109/ICACCS51430.2021.9441767
Krishnamurthy, P., Khorrami, F., Schmidt, S., Wright, K.: Machine learning for NetFlow anomaly detection with human-readable annotations. IEEE Trans. Netw. Serv. Manag. 18(2), 1885–1898 (2021). https://doi.org/10.1109/TNSM.2021.3075656
Ljubojević, M., Bajić, A., Mijić, D.: Centralized monitoring of computer networks using Zenoss open source platform. In: 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–5 (2018). https://doi.org/10.1109/INFOTEH.2018.8345528
Meman, J.M., Villaverde, J.F., Linsangan, N.B.: Automation of daily monitoring operations of N2N connect Berhad using Zabbix technology. In: ICIEI 2021: 2021 The 6th International Conference on Information and Education Innovations, pp. 140–145, April 2021. https://doi.org/10.1145/3470716.3470739
Flowmon ADS. Network anomaly detection system. https://www.flowmon.com/en/products/software-modules/anomaly-detection-system
Kortebi, A., Aouini, Z., Juren, M., Pazdera, J.: Home networks traffic monitoring case study: anomaly detection. In: 2016 Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–6 (2016). https://doi.org/10.1109/GIIS.2016.7814852
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Paulikas, G., Sandonavičius, D., Stasiukaitis, E., Vilutis, G., Vaitkunas, M. (2022). Survey of Cloud Traffic Anomaly Detection Algorithms. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-16302-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16301-2
Online ISBN: 978-3-031-16302-9
eBook Packages: Computer ScienceComputer Science (R0)