Abstract
System monitoring is crucial to ensure that the system is working correctly. Usually, it encompasses solutions from the simple configuration of static thresholds for hardware/software key performance indicators to employing anomaly detection algorithms on a stream of numerical data. System logs, on the other hand, is another golden source of the system state, but often it is overlooked. Combining system logs with load metrics could potentially increase the accuracy of anomaly detection. We propose a robust pipeline and evaluate several of its variants for solving such a task at scale and in real-time. Experiments with proprietary logs from an enterprise Kafka cluster reveal that pre-processing with an autoencoder prior to applying the isolation forest method can significantly improve the detection performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 06 (2017)
Andreolini, M., Colajanni, M., Pietri, M., Tosi, S.: Adaptive, scalable and reliable monitoring of big data on clouds. J. Parallel Distrib. Comput. 79, 67–79 (2015). Special Issue on Scalable Systems for Big Data Management and Analytics
Chong, F., Chua, T., Lim, E.P., Huberman, B.A.: Detecting flow anomalies in distributed systems. In: 2014 IEEE International Conference on Data Mining. IEEE (2014)
Chong, F., Chua, T., Lim, E.P., Huberman, B.A.: Detecting flow anomalies in distributed systems. In: Proceedings of the 2014 IEEE International Conference on Data Mining, ICDM 2014, pp. 100–109, USA. IEEE Computer Society (2014)
Decker, L., Leite, D., Giommi, L., Bonacorsi, D.: Real-time anomaly detection in data centers for log-based predictive maintenance using an evolving fuzzy-rule-based approach. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE (2020)
Dorofeev, A., Kurganov, V., Fillipova, N., Pashkova, T.: Ensuring the integrity of transportation and logistics during the COVID-19 pandemic. Transp. Res. Procedia 50, 96–105 (2020). XIV International Conference on Organization and Traffic Safety Management in Large Cities (OTS-2020)
Farzad, A., Gulliver, T.A.: Unsupervised log message anomaly detection. ICT Express 6(3), 229–237 (2020)
Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in distributed systems through unstructured log analysis. In: 2009 Ninth IEEE International Conference on Data Mining. IEEE (2009)
Poojitha, G., Sowmyarani, C.: Pipeline for real-time anomaly detection in log data streams using Apache Kafka and Apache Spark. Int. J. Comput. Appl. 182(24), 8–13 (2018)
H2O.ai. H2O: Scalable Machine Learning Platform, 2020. version 3.30.0.6
Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., Imran, M.: Real-time big data processing for anomaly detection: a survey. Int. J. Inf. Manage. 45, 289–307 (2019)
He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for anomaly detection. In: 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), pp. 207–218 (2016)
He, S., Zhu, J., He, P., Lyu, M.R.: Loghub: a large collection of system log datasets towards automated log analytics. ArXiv, abs/2008.06448, 2020
Hesse, G., Matthies, C., Rabl, T., Uflacker, M.: How fast can we insert? a performance study of apache kafka. ArXiv, abs/2003.06452 (2020)
Jafarpour, H., Desai, R.: KSQL: streaming SQL engine for Apache Kafka. In: Herschel, M., Galhardas, H., Reinwald, B., Fundulaki, I., Binnig, C., Kaoudi, Z. (eds.) Advances in Database Technology - 22nd International Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal, 26–29 March 2019, pp. 524–533. OpenProceedings.org (2019)
Kochura, Y., Stirenko, S., Alienin, O., Novotarskiy, M., Gordienko, Y.: Performance analysis of open source machine learning frameworks for various parameters in single-threaded and multi-threaded modes. In: Shakhovska, N., Stepashko, V. (eds.) CSIT 2017. AISC, vol. 689, pp. 243–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70581-1_17
Kreps, J., Kafka : a distributed messaging system for log processing (2011)
Kumarage, H., Khalil, I., Tari, Z., Zomaya, A.: Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling. J. Parallel Distrib. Comput. 73(6), 790–806 (2013)
Kumari, R., Singh, M.K., Jha, R., Singh, N.K.: Anomaly detection in network traffic using k-mean clustering. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), pp. 387–393 (2016)
Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of DevOps concepts and challenges. ACM Comput. Surv. 52(6), 1–35 (2019)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining. IEEE (2008)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6(1), 1–39 (2012)
Myers, D., Suriadi, S., Radke, K., Foo, E.: Anomaly detection for industrial control systems using process mining. Comput. Secur. 78, 103–125 (2018)
Nguyen, T.-B.-T., Liao, T.-L., Vu, T.-A.: Anomaly detection using one-class SVM for logs of juniper router devices. In: Duong, T.Q., Vo, N.-S., Nguyen, L.K., Vien, Q.-T., Nguyen, V.-D. (eds.) INISCOM 2019. LNICST, vol. 293, pp. 302–312. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30149-1_24
Nixon, C., Sedky, M., Hassan, M. .: Autoencoders: a low cost anomaly detection method for computer network data streams. In: Proceedings of the 2020 4th International Conference on Cloud and Big Data Computing, ICCBDC 2020, pp. 58–62, New York, NY, USA. Association for Computing Machinery (2020)
Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. CoRR, abs/2007.02500 (2020)
Rabatel, J., Bringay, S., Poncelet, P.: Anomaly detection in monitoring sensor data for preventive maintenance. Expert Syst. Appl. 38(6), 7003–7015 (2011)
Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015)
Sax, M.J.: Apache Kafka, pp. 1–8. Springer International Publishing, Cham (2018)
Sax, M.J., Wang, G., Weidlich, M., Freytag, J.C.: Streams and tables: two sides of the same coin. In: Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics, BIRTE 2018, New York, NY, USA. Association for Computing Machinery (2018)
Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 187–196. International World Wide Web Conferences Steering Committee (2018)
Zasadziński, M., Solé, M., Brandon, A., Muntés-Mulero, V., Carrera, D.: Next stop “NoOps”: enabling cross-system diagnostics through graph-based composition of logs and metrics. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 212–222 (2018)
Zhang, X., et al.: Robust log-based anomaly detection on unstable log data. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, pp. 807–817, New York, NY, USA. Association for Computing Machinery (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Daugėla, K., Vaičiukynas, E. (2022). Real-Time Anomaly Detection for Distributed Systems Logs Using Apache Kafka and H2O.ai. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-16302-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16301-2
Online ISBN: 978-3-031-16302-9
eBook Packages: Computer ScienceComputer Science (R0)