Skip to main content

A Logical Framework for Reasoning About Local and Global Properties of Collective Systems

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2022)

Abstract

Collective adaptive systems (CAS) are composed of a large number of entities that interact with each other to reach local or global goals. Entities operate without any centralized control and should adapt their behavior to the changes in the environment where they operate. Due to the intricacies of these interactions and adaptation, it is difficult to predict the behavior of CAS. For this reason, formal tools are needed to specify and verify this behavior to ensure consistency, reliability, correctness, and safety properties. In this paper, we present a novel logical framework that permits specifying properties of CAS at both local and global levels: local properties refer to the behavior of individuals, while global properties refer to the whole system. An exact model checking algorithm, whose complexity is linear with the size of the formula and with the size of the model is also presented together with another one based on statistical model checking that permits handling systems composed by a large number of agents. Finally, a simple scenario is used to evaluate the advantages of the proposed approach.

This research has been partially supported by Italian PRIN project “IT-MaTTerS” n, 2017FTXR7S, and by POR MARCHE FESR 2014–2020, project “MIRACLE”, CUP B28I19000330007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We omit here the details of function Sample that should be straightforward.

  2. 2.

    https://github.com/quasylab/sibilla.

References

  1. Alrahman, Y.A., Perelli, G., Piterman, N.: Reconfigurable interaction for MAS modelling. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 7–15 (2020)

    Google Scholar 

  2. Abolhasanzadeh, B., Jalili, S.: Towards modeling and runtime verification of self-organizing systems. Expert Syst. Appl. 44, 230–244 (2016)

    Article  Google Scholar 

  3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. (TOMACS) 28(1), 1–39 (2018)

    Article  MathSciNet  Google Scholar 

  4. Aldini, A.: Design and verification of trusted collective adaptive systems. ACM Trans. Model. Comput. Simul. (TOMACS) 28(2), 1–27 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  6. Bortolussi, L., Hillston, J., Loreti, M.: Fluid approximation of broadcasting systems. Theor. Comput. Sci. 816, 221–248 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bortolussi, L., Lanciani, R., Nenzi, L.: Model checking Markov population models by stochastic approximations. Inf. Comput. 262, 189–220 (2018)

    Article  MathSciNet  Google Scholar 

  8. Claessen, K., Mårtensson, J.: An operational semantics for weak PSL. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 337–351. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_24

    Chapter  Google Scholar 

  9. Donzé, A.: On signal temporal logic. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 382–383. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_27

    Chapter  Google Scholar 

  10. Hillston, J.: Quantitative analysis of collective adaptive systems. In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 1–5. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6_1

    Chapter  Google Scholar 

  11. Inverso, O., Trubiani, C., Tuosto, E.: Abstractions for collective adaptive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 243–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_15

    Chapter  Google Scholar 

  12. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated model-checking for self-organising coordination. Sci. Comput. Program. 110, 23–50 (2015)

    Article  Google Scholar 

  13. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statistical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_23

    Chapter  Google Scholar 

  14. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_4

    Chapter  Google Scholar 

  15. Michaelides, M., Hillston, J., Sanguinetti, G.: Geometric fluid approximation for general continuous-time Markov chains. Proc. Roy. Soc. A 475(2229), 20190100 (2019)

    Article  MathSciNet  Google Scholar 

  16. Nicola, R.D., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stigmergy. Sci. Comput. Program. 187, 102345 (2020)

    Article  Google Scholar 

  17. Reijsbergen, D., de Boer, P.-T., Scheinhardt, W., Haverkort, B.: On hypothesis testing for statistical model checking. Int. J. Softw. Tools Technol. Transfer 17(4), 377–395 (2015). https://doi.org/10.1007/s10009-014-0350-1

    Article  Google Scholar 

  18. Vissat, L.L., Hillston, J., Marion, G., Smith, M.J.: MELA: modelling in ecology with location attributes. In: Tribastone, M., Wiklicky, H. (eds.) Proceedings 14th International Workshop Quantitative Aspects of Programming Languages and Systems, QAPL 2016, Volume 227 of EPTCS, Eindhoven, The Netherlands, 2–3 April 2016, pp. 82–97 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Loreti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loreti, M., Rehman, A. (2022). A Logical Framework for Reasoning About Local and Global Properties of Collective Systems. In: Ábrahám, E., Paolieri, M. (eds) Quantitative Evaluation of Systems. QEST 2022. Lecture Notes in Computer Science, vol 13479. Springer, Cham. https://doi.org/10.1007/978-3-031-16336-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16336-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16335-7

  • Online ISBN: 978-3-031-16336-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics