Skip to main content

Comparative Analysis of Sensor-Based Human Activity Recognition Using Artificial Intelligence

  • Conference paper
  • First Online:
Computational Intelligence in Data Science (ICCIDS 2022)

Abstract

Human Activity Recognition (HAR) has become one of the most prominent research topics in the field of ubiquitous computing and pattern recognition over the last decade. In this paper, a comparative analysis of 17 different algorithms is done using a 4-core 940mx machine and a 16-core G4dn.4xlarge Elastic Compute (EC2) instance on a public domain HAR dataset using accelerometer and gyroscope data from the inertial sensors in smartphones. The results are evaluated using the metrics accuracy, F1-score, precision, recall, training time, and testing time. The Machine Learning (ML) models implemented include Logistic Regression (LR), Support Vector Classifier (SVC), Random Forest (RF), Decision Trees (DT), Gradient Boosted Decision Trees (GBDT), linear and Radial Basis Function (RBF) kernel Support Vector Machines (SVM), K- Nearest Neighbors (KNN) and Naive Bayes (NB). The Deep Learning (DL) models implemented include Convolutional Neural Networks (CNN), Long Short Term Memory (LSTM), a combination of CNN-LSTM and Bidirectional LSTM. Neural Structure Learning was also implemented over a CNN-LSTM model along with Deep Belief Networks (DBN). It is identified that the Deep Learning models CNN, LSTM, CNN-LSTM & CNN-BLSTM consistently confuse between dynamic activities and that the machine learning models confuse between static activities. A Divide and Conquer approach was implemented on the dataset and CNN achieved an accuracy of 99.92% on the dynamic activities, whereas the CNN-LSTM model achieved an accuracy of 96.73% eliminating confusion between the static and dynamic activities. Maximum classification accuracy of 99.02% was achieved by DBN on the full dataset after Gaussian standardization. The proposed DBN model is much more efficient, lightweight, accurate, and faster in its classification than the existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasteren, T.V., Englebienne, G., Kröse, B.: An activity monitoring system for elderly care using generative and discriminative models. Pers. Ubiquit. Comput. 14, 489–498 (2009). https://doi.org/10.1007/s00779-009-0277-9

  2. Muralidharan, K., Ramesh, A., Rithvik, G., Prem, S., Reghunaath, A.A., Gopinath, M.P.: 1D Convolution approach to human activity recognition using sensor data and comparison with machine learning algorithms. Int. J. Cogn. Comput. Eng. 2, 130–143 (2021). https://doi.org/10.1016/j.ijcce.2021.09.001

    Article  Google Scholar 

  3. Dorn, D., Gorzelitz, J., Gangnon, R., Bell, D., Koltyn, K., Cadmus-Bertram, L.: Automatic identification of physical activity type and duration by wearable activity trackers: a validation study. JMIR Mhealth Uhealth 7(5), e13547 (2019). https://doi.org/10.2196/13547

  4. San-Segundo, R., Blunck, H., Moreno-Pimentel, J., Stisen, A., Gil-Martín, M.: Robust human activity recognition using smartwatches and smartphones. Eng. Appl. Artif. Intell. 72, 190–202 (2018). https://doi.org/10.1016/j.engappai.2018.04.002

    Article  Google Scholar 

  5. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium, 24–26 April 2013

    Google Scholar 

  6. Bayat, A., Pomplun, M., Tran, D.A.: A study on human activity recognition using accelerometer Dda from smartphones. Proc. Comput. Sci. 34, 450–457 (2014). https://doi.org/10.1016/j.procs.2014.07.009

    Article  Google Scholar 

  7. Golestani, N., Moghaddam, M.: Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks. Nat. Commun. 11(1), 1551 (2020). https://doi.org/10.1038/s41467-020-15086-2

  8. Wang, H.: Wearable sensor-based human activity recognition using hybrid deep learning techniques. Sec. Commun. Netw. 2020, e2132138 (2020). https://doi.org/10.1155/2020/2132138

  9. Uddin, M.Z., Soylu, A.: Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning. Sci. Rep. 11(1), 16455 (2021). https://doi.org/10.1038/s41598-021-95947-y

  10. Wang, L.: Recognition of human activities using continuous autoencoders with wearable sensors. Sens. (Basel, Switzerland) 16(2), 189 (2016). https://doi.org/10.3390/s16020189

  11. Dua, D., Graff, C.: UCI Machine Learning Repository. Opgehaal van (2017). http://archive.ics.uci.edu/ml

  12. Banos, O.: Design, implementation and validation of a novel open framework for agile development of mobile health applications. Biomed. Eng. Online 14(Suppl 2), S6 (2015). https://doi.org/10.1186/1475-925X-14-S2-S6

  13. Banos, O., et al.: mHealthDroid: a novel framework for agile development of mobile health applications. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 91–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_14

    Chapter  Google Scholar 

  14. Sikder, N., Chowdhury, Md.S., Arif, A.S.M., Nahid, A.-A.: Human activity recognition using multichannel convolutional neural network. In: 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), pp. 560–565 (2019). https://doi.org/10.1109/ICAEE48663.2019.8975649

  15. Crucian, F., et al.: Feature learning for human activity recognition using convolutional neural networks: a case study for Inertial measurement unit and audio data. CCF Trans. Pervasive Comput. Inter. 2(1), 18–32 (2020). https://doi.org/10.1007/s42486-020-00026-2

    Article  Google Scholar 

  16. Ullah, M., Ullah, H., Khan, S.D., Cheikh, F.A.: Stacked Lstm network for human activity recognition using smartphone data. In: 2019 8th European Workshop on Visual Information Processing (EUVIP), pp. 175–180 (2019).https://doi.org/10.1109/EUVIP47703.2019.8946180

  17. Ramachandran, K., Pang, J.: Transfer Learning Technique for Human Activity Recognition based on Smartphone Data. 18 (n.d.)

    Google Scholar 

  18. Roobini, S., Naomi, J.F.: Smartphone sensor based human activity recognition using deep learning Models. 8(1), 9 (2019)

    Google Scholar 

  19. Khatiwada, P., Chatterjee, A., Subedi, M.: Automated human Activity Recognition by Colliding Bodies Optimization-based Optimal Feature Selection with Recurrent Neural Network. arXiv:2010.03324 [Cs, Eess] (2021)

  20. Rabbi, J., Fuad, M.T.H., Awal, M.A.: Human Activity Analysis and Recognition from Smartphones using Machine Learning Techniques. arXiv:2103.16490 [Cs] (2021)

  21. Han, P.Y., Ping, L.Y., Ling, G.F., Yin, O.S., How, K.W.: Stacked deep analytic model for human activity recognition on a UCI HAR database (10:1046). F1000Research (2021). https://doi.org/10.12688/f1000research.73174.1

  22. Oh, S., Ashiquzzaman, A., Lee, D., Kim, Y., Kim, J.: Study on human activity recognition using semi-supervised active transfer learning. Sensors (Basel, Switzerland) 21(8), 2760 (2021). https://doi.org/10.3390/s21082760

  23. Huang, W., Zhang, L., Gao, W., Min, F., He, J.: Shallow convolutional neural networks for human activity recognition using wearable sensors. IEEE Trans. Instrum. Meas. 70, 1–11 (2021). https://doi.org/10.1109/TIM.2021.3091990

    Article  Google Scholar 

  24. Xia, K., Huang, J., Wang, H.: LSTM-CNN Architecture for Human Activity Recognition. IEEE Access 8, 56855–56866 (2020). https://doi.org/10.1109/ACCESS.2020.2982225

    Article  Google Scholar 

  25. Nambissan, G.S., Mahajan, P., Sharma, S., Gupta, N.: The variegated applications of deep learning techniques in human activity recognition. In: 2021 Thirteenth International Conference on Contemporary Computing (IC3-2021), pp. 223–233 (2021). https://doi.org/10.1145/3474124.3474156

  26. Tang, Y., Teng, Q., Zhang, L., Min, F., He, J.: Layer-wise training convolutional neural networks with smaller filters for human activity recognition using wearable sensors. IEEE Sens. J. 21(1), 581–592 (2021). https://doi.org/10.1109/JSEN.2020.3015521

    Article  Google Scholar 

  27. Bashar, S.K., Al Fahim, A., Chon, K.H.: Smartphone based human activity recognition with feature selection and dense neural network. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2020, pp. 5888–5891 (2020). https://doi.org/10.1109/EMBC44109.2020.9176239

  28. Zhang, Y., Ramachandran, K. M.: Offline Machine Learning for Human Activity Recognition with Smartphone. 6 (n.d.)

    Google Scholar 

  29. Nematallah, H., Rajan, S.: Comparative study of time series-based human activity recognition using convolutional neural networks. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2020). https://doi.org/10.1109/I2MTC43012.2020.9128582

  30. Ankita, R.S., Babbar, H., Coleman, S., Singh, A., Aljahdali, H.M.: An efficient and lightweight deep learning model for human activity recognition using smartphones. Sensors 21(11), 3845 (2021). https://doi.org/10.3390/s21113845

  31. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 33:1–33:33 (2014). https://doi.org/10.1145/2499621

  32. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467 [Cs] (2016)

  33. Chollet, F., et al.: Keras. GitHub (2015). https://github.com/fchollet/keras

  34. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(null), 2825–2830 (2011)

    Google Scholar 

  35. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

  36. albertbup. Deep-belief-network [Python] (2021). https://github.com/albertbup/deep-belief-network (Original work published 2015)

  37. Gopalan, A., et al.: Neural structured learning: training neural networks with structured signals. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 1150–1153 (2021). https://doi.org/10.1145/3437963.3441666

  38. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  39. McKinney, W.: Data Structures for Statistical Computing in Python. 56–61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

  40. Waskom, M.L.: seaborn: Statistical data visualization. J. Open Source Soft. 6(60), 3021 (2021). https://doi.org/10.21105/joss.03021

  41. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  42. Ke, G.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, vol. 30 (2017). https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

  43. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109 (2012). https://doi.org/10.1109/ISWC.2012.13

  44. Sikder, N., Nahid, A.-A.: KU-HAR: an open dataset for heterogeneous human activity recognition. Pattern Recogn. Lett. 146, 46–54 (2021). https://doi.org/10.1016/j.patrec.2021.02.024

    Article  Google Scholar 

  45. Sutharsan, V., et al.: Electroencephalogram signal processing with independent component analysis and cognitive stress classification using convolutional neural networks. In: Mahapatra, R.P., Peddoju, S.K., Roy, S., Parwekar, P., Goel, L. (eds.) Proceedings of International Conference on Recent Trends in Computing. LNNS, vol. 341, pp. 275–292. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7118-0_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagappan Swaminathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swaminathan, A. (2022). Comparative Analysis of Sensor-Based Human Activity Recognition Using Artificial Intelligence. In: Kalinathan, L., R., P., Kanmani, M., S., M. (eds) Computational Intelligence in Data Science. ICCIDS 2022. IFIP Advances in Information and Communication Technology, vol 654. Springer, Cham. https://doi.org/10.1007/978-3-031-16364-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16364-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16363-0

  • Online ISBN: 978-3-031-16364-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics